Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/46780
DC FieldValueLanguage
dc.contributor.authorSánchez-Nielsen, E.en_US
dc.contributor.authorHernández-Tejera, M.en_US
dc.date.accessioned2018-11-23T08:06:15Z-
dc.date.available2018-11-23T08:06:15Z-
dc.date.issued2011en_US
dc.identifier.issn1751-9632en_US
dc.identifier.urihttp://hdl.handle.net/10553/46780-
dc.description.abstractMany vision problems require fast and accurate tracking of objects in dynamic scenes. In this study, we propose an A* search algorithm through the space of transformations for computing fast target 2D motion. Two features are combined in order to compute efficient motion: (i) Kullback-Leibler measure as heuristic to guide the search process and (ii) incorporation of target dynamics into the search process for computing the most promising search alternatives. The result value of the quality of match computed by the A* search algorithm together with the more common views of the target object are used for verifying template updates. A template will be updated only when the target object has evolved to a transformed shape dissimilar with respect to the actual shape. The study includes experimental evaluations with video streams demonstrating the effectiveness and efficiency for real-time vision based tasks with rigid and deformable objects.en_US
dc.languageengen_US
dc.relation.ispartofIET Computer Visionen_US
dc.sourceIET Computer Vision [ISSN 1751-9632], v. 5 (3), p. 169-177en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherRegistrationen_US
dc.subject.otherImagesen_US
dc.titleReal-time tracking using A* heuristic search and template updatingen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1049/iet-cvi.2010.0032
dc.identifier.scopus80053078956-
dc.identifier.isi000290852700003-
dc.contributor.authorscopusid13105159100-
dc.contributor.authorscopusid55966875800-
dc.identifier.eissn1751-9640-
dc.description.lastpage177-
dc.identifier.issue3-
dc.description.firstpage169-
dc.relation.volume5-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid1518383
dc.contributor.daisngid2188888
dc.contributor.wosstandardWOS:Sanchez-Nielsen, E
dc.contributor.wosstandardWOS:Hernandez-Tejera, M
dc.date.coverdateMayo 2011
dc.identifier.ulpgces
dc.description.sjr0,239
dc.description.jcr0,636
dc.description.sjrqQ2
dc.description.jcrqQ3
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-9717-8048-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameHernández Tejera, Francisco Mario-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.