Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/46735
Title: Existence results for a coupled system of nonlinear fractional hybrid differential equations with homogeneous boundary conditions
Authors: Caballero, Josefa 
Darwish, Mohamed Abdalla
Sadarangani, Kishin 
Shammakh, Wafa M.
UNESCO Clasification: 120219 Ecuaciones diferenciales ordinarias
Keywords: Banach-Algebras
Noncompactness
Issue Date: 2014
Journal: Abstract and Applied Analysis 
Abstract: We study an existence result for the following coupled system of nonlinear fractional hybrid differential equations with homogeneous boundary conditions D0+α[x(t)/f(t,x(t),y(t))]=g(t,x(t),y(t)),D0+αy(t)/f(t,y(t),x(t))=g(t,y(t),x(t)), 0<t<1, and x(0)=y(0)=0, where αElement(0,1) and D0+α denotes the Riemann-Liouville fractional derivative. The main tools in our study are the techniques associated to measures of noncompactness in the Banach algebras and a fixed point theorem of Darbo type.
URI: http://hdl.handle.net/10553/46735
ISSN: 1085-3375
DOI: 10.1155/2014/672167
Source: Abstract and Applied Analysis [ISSN 1085-3375], v. 2014, (Enero 2014)
Appears in Collections:Artículos
Thumbnail
pdf
Adobe PDF (1,91 MB)
Show full item record

Page view(s)

31
checked on Feb 28, 2021

Download(s)

33
checked on Feb 28, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.