Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/46493
Title: Semiautomatic snake-based segmentation of solid breast nodules on ultrasonography
Authors: Alemán-Flores, Miguel 
Aleman-Flores, P 
Álvarez-Leon, Luis 
Esteban-Sánchez, M. Belén
Fuentes-Pavón, Rafael
Santana-Montesdeoca, José M.
UNESCO Clasification: 220990 Tratamiento digital. Imágenes
32 Ciencias médicas
120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
Keywords: Breast ultrasound
Solid breast nodules
Ultrasonography
Issue Date: 2005
Journal: Lecture Notes in Computer Science 
Conference: 10th International Conference on Computer Aided Systems Theory 
10th International Conference on Computer Aided Systems Theory - EUROCAST 2005 
Abstract: Ultrasonography plays a crucial role in the diagnosis of breast cancer. However, it is one of the most difficult types of images to segment and analyze. The presence of speckle noise and low contrast areas limits the success of most noise reduction filters and segmentation algorithms. In this paper, we propose a combination of different techniques which provide quite satisfactory results in the segmentation of breast tumors on ultrasonography. It is performed in a semiautomatic way, which eliminates the need for a manual delineation of the contour of the nodules. These techniques include the truncated median filter, a region-growing algorithm and active contours. Furthermore, this can be the initial phase for an exhaustive analysis of the diagnostic criteria in breast ultrasound.
URI: http://hdl.handle.net/10553/46493
ISBN: 978-3-540-29002-5
3540290028
ISSN: 0302-9743
DOI: 10.1007/11556985_60
Source: Moreno Díaz R., Pichler F., Quesada Arencibia A. (eds) Computer Aided Systems Theory – EUROCAST 2005. EUROCAST 2005. Lecture Notes in Computer Science, vol 3643. Springer, Berlin, Heidelberg
Appears in Collections:Actas de congresos
Show full item record

SCOPUSTM   
Citations

1
checked on Feb 21, 2021

WEB OF SCIENCETM
Citations

1
checked on Feb 21, 2021

Page view(s)

35
checked on Feb 21, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.