Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46219
Título: Molecular dynamics simulations of rigid and flexible water models: temperature dependence of viscosity
Autores/as: Medina, J. S.
Prosmiti, R.
Villarreal, P.
Delgado-Barrio, G.
Winter, G. 
Gonzalez, B. 
Alemán, J. V.
Collado, C. 
Clasificación UNESCO: 1206 Análisis numérico
120326 Simulación
Palabras clave: Liquid water models
Molecular dynamics simulations
Viscosity calculations
Fecha de publicación: 2011
Publicación seriada: Chemical Physics 
Resumen: Molecular dynamics (MD) simulations are carried out on a system of rigid or flexible water molecules at a series of temperatures between 273 and 368 K. Collective transport coefficients, such as shear and bulk viscosities are calculated, and their behavior is systematically investigated as a function of flexibility and temperature. It is found that by including the intramolecular terms in the potential the calculated viscosity values are in overall much better agreement, compared to earlier and recent available experimental data, than those obtained with the rigid SPC/E model. The effect of the intramolecular degrees of freedom on transport properties of liquid water is analyzed and the incorporation of polarizability is discussed for further improvements. To our knowledge the present study constitutes the first compendium of results on viscosities for pure liquid water, including flexible models, that has been assembled
URI: http://hdl.handle.net/10553/46219
ISSN: 0301-0104
DOI: 10.1016/j.chemphys.2011.07.001
Fuente: Chemical Physics [ISSN 0301-0104], v. 388 (1-2), p. 9-18
Colección:Artículos
Vista completa

Citas SCOPUSTM   

55
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

52
actualizado el 17-nov-2024

Visitas

93
actualizado el 16-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.