Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/46214
Title: | On the initial growth of interfaces in reaction-diffusion equations with strong absorption | Authors: | Alvarez, Luis Diaz, Jesus Ildefonso |
UNESCO Clasification: | 1206 Análisis numérico 120601 Construcción de algoritmos 120602 Ecuaciones diferenciales |
Keywords: | Heat-Equation Thermal Waves Media |
Issue Date: | 1993 | Journal: | Proceedings of the Royal Society of Edinburgh Section A: Mathematics | Abstract: | We study the initial growth of the interfaces of non-negative local solutions of the equation u(t) = (u(m))xx - lambdau(q) when m greater-than-or-equal-to 1 and 0 < q < 1. We show that if u(x, 0) greater-than-or-equal-to C(-x)+2/(m-q) with C > C0, for some explicit C0 = C0(lambda, m, q), then the free boundary zeta(t) = sup {x: u(x, t) > 0} is a ''heating front''. More precisely zeta(t) greater-than-or-equal-to at(m-q)/2(1-q) for any t small enough and for some a > 0. If on the contrary, u(x, 0) less-than-or-equal-to C(-x)+2/(m-q) with C < C0, then zeta(t) is a ''cooling front'' and in fact zeta(t) less-than-or-equal-to -at(m-q)/2(1-q) for any t small enough and for some a > 0. Applications to solutions of the associated Cauchy and Dirichlet problems are also given. | URI: | http://hdl.handle.net/10553/46214 | ISSN: | 0308-2105 | DOI: | 10.1017/S0308210500029504 | Source: | Proceedings of the Royal Society of Edinburgh: Section A Mathematics [ISSN 0308-2105], v.123 (5), p. 803-817 |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.