Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/46214
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Alvarez, Luis | en_US |
dc.contributor.author | Diaz, Jesus Ildefonso | en_US |
dc.contributor.other | Alvarez, Luis | - |
dc.contributor.other | Diaz, Jesus Ildefonso | - |
dc.date.accessioned | 2018-11-23T02:24:41Z | - |
dc.date.available | 2018-11-23T02:24:41Z | - |
dc.date.issued | 1993 | en_US |
dc.identifier.issn | 0308-2105 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/46214 | - |
dc.description.abstract | We study the initial growth of the interfaces of non-negative local solutions of the equation u(t) = (u(m))xx - lambdau(q) when m greater-than-or-equal-to 1 and 0 < q < 1. We show that if u(x, 0) greater-than-or-equal-to C(-x)+2/(m-q) with C > C0, for some explicit C0 = C0(lambda, m, q), then the free boundary zeta(t) = sup {x: u(x, t) > 0} is a ''heating front''. More precisely zeta(t) greater-than-or-equal-to at(m-q)/2(1-q) for any t small enough and for some a > 0. If on the contrary, u(x, 0) less-than-or-equal-to C(-x)+2/(m-q) with C < C0, then zeta(t) is a ''cooling front'' and in fact zeta(t) less-than-or-equal-to -at(m-q)/2(1-q) for any t small enough and for some a > 0. Applications to solutions of the associated Cauchy and Dirichlet problems are also given. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Proceedings of the Royal Society of Edinburgh Section A: Mathematics | en_US |
dc.source | Proceedings of the Royal Society of Edinburgh: Section A Mathematics [ISSN 0308-2105], v.123 (5), p. 803-817 | en_US |
dc.subject | 1206 Análisis numérico | en_US |
dc.subject | 120601 Construcción de algoritmos | en_US |
dc.subject | 120602 Ecuaciones diferenciales | en_US |
dc.subject.other | Heat-Equation | |
dc.subject.other | Thermal Waves | |
dc.subject.other | Media | |
dc.title | On the initial growth of interfaces in reaction-diffusion equations with strong absorption | en_US |
dc.type | info:eu-repo/semantics/Article | es |
dc.type | Article | es |
dc.identifier.doi | 10.1017/S0308210500029504 | |
dc.identifier.scopus | 84971714004 | - |
dc.identifier.scopus | WOS:A1993MF24000002 | - |
dc.identifier.scopus | WOS:A1993MF24000002 | - |
dc.identifier.scopus | WOS:A1993MF24000002 | - |
dc.identifier.isi | A1993MF24000002 | - |
dcterms.isPartOf | Proceedings Of The Royal Society Of Edinburgh Section A-Mathematics | - |
dcterms.source | Proceedings Of The Royal Society Of Edinburgh Section A-Mathematics[ISSN 0308-2105],v. 123, p. 803-817 | - |
dc.contributor.authorscopusid | 55640159000 | - |
dc.contributor.authorscopusid | 7401603758 | - |
dc.contributor.authorscopusid | 57192906888 | |
dc.identifier.eissn | 1473-7124 | - |
dc.description.lastpage | 817 | - |
dc.identifier.issue | 5 | - |
dc.description.firstpage | 803 | - |
dc.relation.volume | 123 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.identifier.wos | WOS:A1993MF24000002 | - |
dc.contributor.daisngid | 478566 | - |
dc.contributor.daisngid | 158592 | - |
dc.identifier.investigatorRID | A-9190-2009 | - |
dc.identifier.investigatorRID | L-6827-2014 | - |
dc.identifier.external | WOS:A1993MF24000002 | - |
dc.identifier.external | WOS:A1993MF24000002 | - |
dc.contributor.wosstandard | WOS:ALVAREZ, L | |
dc.contributor.wosstandard | WOS:DIAZ, JI | |
dc.date.coverdate | Enero 1993 | |
dc.identifier.ulpgc | Sí | es |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR Modelos Matemáticos | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0002-6953-9587 | - |
crisitem.author.parentorg | Departamento de Informática y Sistemas | - |
crisitem.author.fullName | Álvarez León, Luis Miguel | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.