Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/46192
Título: | Segmentation of computed tomography 3D images using partial differential equations | Autores/as: | Alemán-Flores, Miguel Alvarez, L Alemán-Flores, Patricia Fuentes-Pavón, Rafael |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes 32 Ciencias médicas 120601 Construcción de algoritmos 120602 Ecuaciones diferenciales 120326 Simulación |
Palabras clave: | Computed tomography Partial differential equations Segmentation |
Fecha de publicación: | 2011 | Conferencia: | 7th International Conference on Signal Image Technology and Internet-Based Systems, SITIS 2011 | Resumen: | The analysis of medical images, such as Computed Tomography (CT) Images, increasingly requires an automatic processing for region enhancement, segmentation, 3D reconstruction and many other purposes. This paper presents a framework for performing these tasks using partial differential equations in 3D images. From a set of partial differential equations, we obtain a method for noise reduction filtering with edge preservation, region enhancement through the discrimination of the relevant density values, contour refinement and 3D reconstruction. | URI: | http://hdl.handle.net/10553/46192 | ISBN: | 978-1-4673-0431-3 9780769546353 |
DOI: | 10.1109/SITIS.2011.38 | Fuente: | Proceedings - 7th International Conference on Signal Image Technology and Internet-Based Systems, SITIS 2011 (6120671), p. 345-349 |
Colección: | Actas de congresos |
Citas SCOPUSTM
1
actualizado el 17-nov-2024
Visitas
121
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.