Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/46192
Title: Segmentation of computed tomography 3D images using partial differential equations
Authors: Alemán-Flores, Miguel 
Alvarez, L 
Alemán-Flores, Patricia
Fuentes-Pavón, Rafael
UNESCO Clasification: 220990 Tratamiento digital. Imágenes
32 Ciencias médicas
120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
Keywords: Computed tomography
Partial differential equations
Segmentation
Issue Date: 2011
Conference: 7th International Conference on Signal Image Technology and Internet-Based Systems, SITIS 2011 
Abstract: The analysis of medical images, such as Computed Tomography (CT) Images, increasingly requires an automatic processing for region enhancement, segmentation, 3D reconstruction and many other purposes. This paper presents a framework for performing these tasks using partial differential equations in 3D images. From a set of partial differential equations, we obtain a method for noise reduction filtering with edge preservation, region enhancement through the discrimination of the relevant density values, contour refinement and 3D reconstruction.
URI: http://hdl.handle.net/10553/46192
ISBN: 978-1-4673-0431-3
9780769546353
DOI: 10.1109/SITIS.2011.38
Source: Proceedings - 7th International Conference on Signal Image Technology and Internet-Based Systems, SITIS 2011 (6120671), p. 345-349
Appears in Collections:Actas de congresos
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.