Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/46192
Title: Segmentation of computed tomography 3D images using partial differential equations
Authors: Alemán-Flores, Miguel 
Alvarez, L 
Alemán-Flores, Patricia
Fuentes-Pavón, Rafael
UNESCO Clasification: 220990 Tratamiento digital. Imágenes
32 Ciencias médicas
120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
Keywords: Computed tomography
Partial differential equations
Segmentation
Issue Date: 2011
Conference: 7th International Conference on Signal Image Technology and Internet-Based Systems, SITIS 2011 
Abstract: The analysis of medical images, such as Computed Tomography (CT) Images, increasingly requires an automatic processing for region enhancement, segmentation, 3D reconstruction and many other purposes. This paper presents a framework for performing these tasks using partial differential equations in 3D images. From a set of partial differential equations, we obtain a method for noise reduction filtering with edge preservation, region enhancement through the discrimination of the relevant density values, contour refinement and 3D reconstruction.
URI: http://hdl.handle.net/10553/46192
ISBN: 978-1-4673-0431-3
9780769546353
DOI: 10.1109/SITIS.2011.38
Source: Proceedings - 7th International Conference on Signal Image Technology and Internet-Based Systems, SITIS 2011 (6120671), p. 345-349
Appears in Collections:Actas de congresos
Show full item record

SCOPUSTM   
Citations

1
checked on Nov 17, 2024

Page view(s)

121
checked on Nov 1, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.