Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/46173
Título: | Handwritten signatures recognizer by its envelope and strokes layout using HMM's | Autores/as: | Sánchez, J. A. Travieso, C. M. Alonso, I. G. Ferrer, M. A. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Handwriting recognition Hidden Markov models Automatic speech recognition Karhunen-Loeve transforms Fast Fourier transforms |
Fecha de publicación: | 2001 | Publicación seriada: | IEEE Annual International Carnahan Conference on Security Technology, Proceedings | Conferencia: | 35th Annual International Carnahan Conference on Security Technology 35th Annual 2001 International Carnahan Conference on Security Technology |
Resumen: | A method for the automatic recognition of offline handwritten signatures using both global and local features is described. As global features, we use the envelope of the signature sequenced as polar coordinates; and as local features we use points located inside the envelope that describe the density or distribution of signature strokes. Each feature is processed as a sequence by a hidden Markov Model (HMM) classifier. The results of both classifiers are linearly combined, obtaining a recognition ratio of 95.15% with a database of 60 handwritten signatures. | URI: | http://hdl.handle.net/10553/46173 | ISBN: | 0-7803-6636-0 | Fuente: | IEEE Annual International Carnahan Conference on Security Technology, Proceedings, p. 267-271 |
Colección: | Actas de congresos |
Citas SCOPUSTM
3
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 25-feb-2024
Visitas
104
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.