Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/46166
DC FieldValueLanguage
dc.contributor.authorFerrer, Miguel A.en_US
dc.contributor.authorAlonso, Itziar G.en_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.contributor.authorFigueiras-Vidal, Anibal R.en_US
dc.date.accessioned2018-11-23T01:57:46Z-
dc.date.available2018-11-23T01:57:46Z-
dc.date.issued2000en_US
dc.identifier.issn2219-5491en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/46166-
dc.description.abstractStandard Hidden Markov Models (HMM) have proved to be a very useful tool for temporal sequence pattern recognition, although they present a poor discriminative power. On the contrary Neural Networks (NNs) have been recognized as powerful tools for classification task, but they are less efficient to model temporal variation than HMM. In order to get the advantages of both HMMs and NNs, different hybrid structures have been proposed. In this paper we suggest a HMM/NN hybrid where the NN classify from HMM scores. As NN we have used a committee of networks. As networks of the committee we have used a Multilayer Perceptron (MLP: a global classifier) and Radial Basis Function (RBF: a local classifier) nets which drawn conceptually different interclass borders. The combining algorithm is the TopNSeg scoring method which sum the top N ranked networks normalized outputs for each class. The test of above architecture with speech recognition, handwritten numeral classification, and signature verification problems show that this architecture works significantly better than the isolated networks.en_US
dc.languageengen_US
dc.relation.ispartofEuropean Signal Processing Conferenceen_US
dc.sourceEuropean Signal Processing Conference[ISSN 2219-5491],v. 2015-March (7075437)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherHandwriting recognitionen_US
dc.subject.otherHidden Markov modelsen_US
dc.subject.otherSpeech recognitionen_US
dc.subject.otherArtificial neural networksen_US
dc.subject.otherStandardsen_US
dc.titleImproving generalization ability of HMM/NNs based classifiersen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2000 10th European Signal Processing Conference, EUSIPCO 2000
dc.identifier.scopus84937061226-
dc.contributor.authorscopusid55636321172-
dc.contributor.authorscopusid7006334508-
dc.contributor.authorscopusid6602376272-
dc.contributor.authorscopusid7006625369-
dc.identifier.issue7075437-
dc.relation.volume2015-Marchen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateMarzo 2000
dc.identifier.conferenceidevents121549
dc.identifier.ulpgces
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.event.eventsstartdate04-09-2000-
crisitem.event.eventsenddate08-09-2000-
Appears in Collections:Actas de congresos
Thumbnail
Adobe PDF (89,8 kB)
Show simple item record

Page view(s)

109
checked on Nov 1, 2024

Download(s)

32
checked on Nov 1, 2024

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.