Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/46147
DC FieldValueLanguage
dc.contributor.authorDas, Abhijiten_US
dc.contributor.authorPal, Umapadaen_US
dc.contributor.authorFerrer Ballester, Miguel A.en_US
dc.contributor.authorBlumenstein, Michaelen_US
dc.date.accessioned2018-11-23T01:48:18Z-
dc.date.available2018-11-23T01:48:18Z-
dc.date.issued2013en_US
dc.identifier.isbn9783319029603en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10553/46147-
dc.description.abstractThis paper proposes a new sclera vessel recognition technique. The vesselpatterns of sclera are unique for each individual and this can be utilized to identify a person uniquely. In this research we have used a time adaptive active contour-based region growing technique for sclera segmentation. Prior to that, we have made some tonal and illumination correction to get a clearer sclera area without the distributing vessel structure. This is because the presence of complex vessel structures occasionally affects the region-growing process. The sclera vessels are not prominent in the images, so in order to make them clearly visible, a local image enhancement process using a Haar high pass filter is incorporated. To get the total orientation of the vessels, we have used Orientated Local Binary Pattern (OLBP). The OLBP images of each class are used for template matching for classification by calculating the minimum Hamming Distance. We have used the UBIRIS version 1 dataset for the experimentation of our research. The proposed approach has achieved high recognition accuracy employing the above-mentioned dataset.en_US
dc.languageengen_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 8232 LNCS, p. 370-377en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherSclera Biometricen_US
dc.subject.otherSclera vesselsen_US
dc.subject.otherPatternsen_US
dc.subject.otherHaar filteren_US
dc.subject.otherOLBPen_US
dc.subject.otherLBPen_US
dc.titleA new method for sclera vessel recognition using OLBPen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2012 International Conference on Service-Oriented Computing, ICSOC 2012
dc.identifier.doi10.1007/978-3-319-02961-0_46
dc.identifier.scopus84893075822-
dc.contributor.authorscopusid57214490551
dc.contributor.authorscopusid7403596707-
dc.contributor.authorscopusid57200742116-
dc.contributor.authorscopusid55636321172-
dc.contributor.authorscopusid56243577200-
dc.description.lastpage377en_US
dc.description.firstpage370en_US
dc.relation.volume8232 LNCSen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2013
dc.identifier.conferenceidevents121498
dc.identifier.ulpgces
dc.description.sjr0,329
dc.description.sjrqQ3
dc.description.ggs2
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate16-11-2013-
crisitem.event.eventsenddate17-11-2013-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Appears in Collections:Actas de congresos
Thumbnail
Adobe PDF (659,67 kB)
Show simple item record

SCOPUSTM   
Citations

20
checked on Mar 30, 2025

Page view(s)

127
checked on Nov 1, 2024

Download(s)

226
checked on Nov 1, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.