Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/46142
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ferrer, Miguel A. | en_US |
dc.contributor.author | Morales, Aythami | en_US |
dc.contributor.author | Díaz, Alba | en_US |
dc.contributor.other | Morales, Aythami | - |
dc.contributor.other | Ferrer, Miguel A | - |
dc.date.accessioned | 2018-11-23T01:45:47Z | - |
dc.date.available | 2018-11-23T01:45:47Z | - |
dc.date.issued | 2014 | en_US |
dc.identifier.issn | 0020-0255 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/46142 | - |
dc.description.abstract | Hand based biometry includes some of the most useful technologies for person identification. The search for new techniques, which complement the battery of existing methods, is an open topic. This paper examines the utility of hyperspectral imagery for hand recognition. Hyperspectral technology permits the sensing of the subsurface tissue structure, which is significantly different from person to person. The data are collected using a SWIR camera in conjunction with an optical spectrograph. This transforms the camera into a line-scan hyperspectral imaging device. Three feature extraction methods for hyperspectral hand curve characterization are examined. They are based on the area, slope or curvature at different automatically selected spatial hand positions. We report a set of experiments which explore: best hand zones for extracting local hyperspectral features; robustness against the number of training samples; error detection; and occlusion. Different strategies for combining the spectral features with geometric traits available in the hyperspectral cube are discussed. Our experiments show that local spectral properties of human tissue are effective discriminants for biometric recognition with a performance near to or better than that obtained by other hand traits. Equal Error Rates of 0.05% and an identification rate of 96.71% are obtained from a database of 154 people. These results along with their higher robustness to spoofing attacks make the hyperspectral features a promising alternative for person identification. | en_US |
dc.language | eng | en_US |
dc.publisher | 0020-0255 | |
dc.relation.ispartof | Information Sciences | en_US |
dc.source | Information Sciences[ISSN 0020-0255],v. 268, p. 3-19 | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Biometric | en_US |
dc.subject.other | Hand Recognition | en_US |
dc.subject.other | Spectrographic | en_US |
dc.subject.other | Hyperspectral | en_US |
dc.title | An approach to SWIR hyperspectral hand biometrics | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.ins.2013.10.011 | |
dc.identifier.scopus | 84897032950 | - |
dc.identifier.isi | 000335110700002 | - |
dcterms.isPartOf | Information Sciences | |
dcterms.source | Information Sciences[ISSN 0020-0255],v. 268, p. 3-19 | |
dc.contributor.authorscopusid | 55636321172 | - |
dc.contributor.authorscopusid | 24476050500 | - |
dc.contributor.authorscopusid | 7201946466 | |
dc.contributor.authorscopusid | 55921301400 | - |
dc.description.lastpage | 19 | en_US |
dc.description.firstpage | 3 | en_US |
dc.relation.volume | 268 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.identifier.wos | WOS:000335110700002 | - |
dc.contributor.daisngid | 233119 | - |
dc.contributor.daisngid | 1418808 | - |
dc.contributor.daisngid | 28691127 | - |
dc.contributor.daisngid | 32888586 | |
dc.identifier.investigatorRID | L-2529-2013 | - |
dc.identifier.investigatorRID | L-3863-2013 | - |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Ferrer, MA | |
dc.contributor.wosstandard | WOS:Morales, A | |
dc.contributor.wosstandard | WOS:Diaz, A | |
dc.date.coverdate | Junio 2014 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 2,422 | |
dc.description.jcr | 4,038 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-2924-1225 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Ferrer Ballester, Miguel Ángel | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
24
checked on Mar 30, 2025
WEB OF SCIENCETM
Citations
19
checked on Mar 30, 2025
Page view(s)
73
checked on Mar 9, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.