Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46140
Título: Synthesis of large scale hand-shape databases for biometric applications
Autores/as: Morales, Aythami
Ferrer, Miguel A. 
Cappelli, Raffaele
Maltoni, Davide
Fierrez, Julian
Ortega-Garcia, Javier
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Biometric recognition
Biometric synthesis
Hand-shape
Fecha de publicación: 2015
Editor/a: 0167-8655
Publicación seriada: Pattern Recognition Letters 
Resumen: This work proposes and analyzes a novel methodology for hand-shape image synthesis. The hand-shape is a popular biometric trait with a high convenience of use and non-intrusive acquisition. The proposed algorithm allows to generate realistic images with natural intra-person and inter-person variability. The method is based on the Active Shape Model algorithm which has been modified in order to add the biometric information typical of new synthetic identities. The generated images are evaluated using three public databases and two hand-shape recognition systems. The results show the suitability of the synthetic data for biometric recognition works. In addition, two novel applications have been proposed to provide new insights in hand-shape biometric recognition including: improvement of machine learning classification based on synthetic training sets and scalability analysis of hand-shape biometrics when the population of the database is increased by two orders of magnitude with respect to existing databases.
URI: http://hdl.handle.net/10553/46140
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2015.09.011
Fuente: Pattern Recognition Letters[ISSN 0167-8655],v. 68, p. 183-189
Colección:Artículos
miniatura
Adobe PDF (2,44 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.