Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/46139
Título: | Latent fingerprint identification using deformable minutiae clustering | Autores/as: | Medina-Pérez, Miguel Angel Moreno, Aythami Morales Ferrer Ballester, Miguel Angel García-Borroto, Milton Loyola-González, Octavio Altamirano-Robles, Leopoldo |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Biometrics Latent fingerprints Minutiae-based algorithms |
Fecha de publicación: | 2016 | Editor/a: | 0925-2312 | Publicación seriada: | Neurocomputing | Conferencia: | 6th Mexican Conference on Pattern Recognition (MCPR) | Resumen: | Automatic latent fingerprint identification is a useful tool for criminal investigation. However, the accuracy of identification reported in the state-of-the-art literature is low due to the distortion in latent fingerprint images. In this paper, we describe a new algorithm based on the use of clustering which is independent of the minutiae descriptors. The proposed technique improves the robustness of identification in the presence of large non-linear deformation which is associated with latent fingerprint images. The new algorithm finds multiple overlapping clusters of matching minutiae pairs which are merged together to find matching minutiae. Several experiments performed using latent fingerprint databases show that our proposed algorithm achieves higher accuracy than those presented in state-of-the-art literature. Moreover, the results show that the proposed algorithm is successful in dealing with the large distortion associated with latent fingerprints formed under the worst conditions. | URI: | http://hdl.handle.net/10553/46139 | ISSN: | 0925-2312 | DOI: | 10.1016/j.neucom.2015.05.130 | Fuente: | Neurocomputing[ISSN 0925-2312],v. 175, p. 851-865 |
Colección: | Artículos |
Citas SCOPUSTM
32
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
26
actualizado el 15-dic-2024
Visitas
105
actualizado el 16-mar-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.