Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46131
Campo DC Valoridioma
dc.contributor.authorDas, Abhijit-
dc.contributor.authorPal, Umapada-
dc.contributor.authorFerrer, Miguel A.-
dc.contributor.authorBlumenstein, Michael-
dc.date.accessioned2018-11-23T01:40:25Z-
dc.date.available2018-11-23T01:40:25Z-
dc.date.issued2018-
dc.identifier.isbn9781538611241-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/46131-
dc.description.abstractIn this work, we propose a posterior probability-based decision-level fusion strategy for multimodal ocular biometric in the visible spectrum employing iris, sclera and peri-ocular trait. To best of our knowledge this is the first attempt to design a multimodal ocular biometrics using all three ocular traits. Employing all these traits in combination can help to increase the reliability and universality of the system. For instance in some scenarios, the sclera and iris can be highly occluded or for completely closed eyes scenario, the peri-ocular trait can be relied on for the decision. The proposed system is constituted of three independent traits and their combinations. The classification output of the trait which produces highest posterior probability is to consider as the final decision. An appreciable reliability and universal applicability of ocular trait are achieved in experiments conducted employing the proposed scheme.-
dc.languageeng-
dc.relation.ispartofIEEE International Joint Conference on Biometrics, IJCB 2017-
dc.sourceIEEE International Joint Conference on Biometrics, IJCB 2017,v. 2018-January, p. 794-798-
dc.subject3307 Tecnología electrónica-
dc.subject.otherIris recognition-
dc.subject.otherImage color analysis-
dc.subject.otherFeature extraction-
dc.subject.otherSupport vector machines-
dc.subject.otherProbability-
dc.subject.otherMobile communication-
dc.subject.otherTraining-
dc.titleA decision-level fusion strategy for multimodal ocular biometric in visible spectrum based on posterior probability-
dc.typeinfo:eu-repo/semantics/conferenceObject-
dc.typeConferenceObject-
dc.relation.conference2017 IEEE International Joint Conference on Biometrics, IJCB 2017-
dc.identifier.doi10.1109/BTAS.2017.8272772-
dc.identifier.scopus85046275652-
dc.identifier.isi000426973200098-
dc.contributor.authorscopusid57214490551-
dc.contributor.authorscopusid7403596707-
dc.contributor.authorscopusid57200742116-
dc.contributor.authorscopusid55636321172-
dc.contributor.authorscopusid56243577200-
dc.description.lastpage798-
dc.description.firstpage794-
dc.relation.volume2018-January-
dc.investigacionIngeniería y Arquitectura-
dc.type2Actas de congresos-
dc.contributor.daisngid3164655-
dc.contributor.daisngid25227-
dc.contributor.daisngid233119-
dc.contributor.daisngid110880-
dc.description.numberofpages5-
dc.identifier.eisbn978-1-5386-1124-1-
dc.utils.revision-
dc.contributor.wosstandardWOS:Das, A-
dc.contributor.wosstandardWOS:Pal, U-
dc.contributor.wosstandardWOS:Ferrer, MA-
dc.contributor.wosstandardWOS:Blumenstein, M-
dc.date.coverdateEnero 2018-
dc.identifier.conferenceidevents121091-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate01-10-2017-
crisitem.event.eventsenddate04-10-2017-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.