Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/46131
Título: | A decision-level fusion strategy for multimodal ocular biometric in visible spectrum based on posterior probability | Autores/as: | Das, Abhijit Pal, Umapada Ferrer, Miguel A. Blumenstein, Michael |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Iris recognition Image color analysis Feature extraction Support vector machines Probability, et al. |
Fecha de publicación: | 2018 | Publicación seriada: | IEEE International Joint Conference on Biometrics, IJCB 2017 | Conferencia: | 2017 IEEE International Joint Conference on Biometrics, IJCB 2017 | Resumen: | In this work, we propose a posterior probability-based decision-level fusion strategy for multimodal ocular biometric in the visible spectrum employing iris, sclera and peri-ocular trait. To best of our knowledge this is the first attempt to design a multimodal ocular biometrics using all three ocular traits. Employing all these traits in combination can help to increase the reliability and universality of the system. For instance in some scenarios, the sclera and iris can be highly occluded or for completely closed eyes scenario, the peri-ocular trait can be relied on for the decision. The proposed system is constituted of three independent traits and their combinations. The classification output of the trait which produces highest posterior probability is to consider as the final decision. An appreciable reliability and universal applicability of ocular trait are achieved in experiments conducted employing the proposed scheme. | URI: | http://hdl.handle.net/10553/46131 | ISBN: | 9781538611241 | DOI: | 10.1109/BTAS.2017.8272772 | Fuente: | IEEE International Joint Conference on Biometrics, IJCB 2017,v. 2018-January, p. 794-798 |
Colección: | Actas de congresos |
Citas SCOPUSTM
5
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
4
actualizado el 25-feb-2024
Visitas
75
actualizado el 23-ene-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.