Please use this identifier to cite or link to this item:
Title: A simple methodology for characterization of germanium coaxial detectors by using Monte Carlo simulation and evolutionary algorithms
Authors: González Guerra, Antonio 
Rubiano, J. G. 
Winter, G. 
González Guerra, Jonay 
Alonso, H. 
Arnedo, M. A. 
Tejera, A. 
Gil, J. M. 
Rodriguez, R. 
Martel, P. 
Bolivar, J. P.
UNESCO Clasification: 221213 Radiación (electromagnética)
1206 Análisis numérico
Keywords: Gamma-ray spectrometry
Monte Carlo method
Differential evolution
Efficiency calibration
Characterization germanium detectors
Issue Date: 2015
Publisher: 0265-931X
Project: Evaluación Del Fondo Radiactivo Natural de Las Islas Canarias Orientales; Implicaciones Radiológicas Sobre la Población. 
Journal: Journal of Environmental Radioactivity 
Abstract: The determination in a sample of the activity concentration of a specific radionuclide by gamma spectrometry needs to know the full energy peak efficiency (FEPE) for the energy of interest. The difficulties related to the experimental calibration make it advisable to have alternative methods for FEPE determination, such as the simulation of the transport of photons in the crystal by the Monte Carlo method, which requires an accurate knowledge of the characteristics and geometry of the detector. The characterization process is mainly carried out by Canberra Industries Inc. using proprietary techniques and methodologies developed by that company. It is a costly procedure (due to shipping and to the cost of the process itself) and for some research laboratories an alternative in situ procedure can be very useful. The main goal of this paper is to find an alternative to this costly characterization process, by establishing a method for optimizing the parameters of characterizing the detector, through a computational procedure which could be reproduced at a standard research lab. This method consists in the determination of the detector geometric parameters by using Monte Carlo simulation in parallel with an optimization process, based on evolutionary algorithms, starting from a set of reference FEPEs determined experimentally or computationally. The proposed method has proven to be effective and simple to implement. It provides a set of characterization parameters which it has been successfully validated for different source-detector geometries, and also for a wide range of environmental samples and certified materials.
ISSN: 0265-931X
DOI: 10.1016/j.jenvrad.2015.06.017
Source: Journal Of Environmental Radioactivity[ISSN 0265-931X],v. 149, p. 8-18
Appears in Collections:Artículos
Show full item record


checked on Jul 25, 2021


checked on Jul 25, 2021

Page view(s)

checked on Jul 24, 2021

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.