Please use this identifier to cite or link to this item:
Title: Structure of a laser-driven radiative shock
Authors: Chaulagain, U.
Stehlé, C.
Larour, J.
Kozlová, M.
Suzuki-Vidal, F.
Barroso, P.
Cotelo, M.
Velarde, P.
Rodriguez, R. 
Gil, J. M. 
Ciardi, A.
Acef, O.
Nejdl, J.
de Sá, L.
Singh, R. L.
Ibgui, L.
Champion, N.
UNESCO Clasification: 220410 Física de plasmas
Keywords: Laser generated shocks
Stellar accretion
Radiative hydrodynamics
Radiative transfer
Issue Date: 2015
Publisher: 1574-1818
Journal: High Energy Density Physics 
Abstract: Radiative shocks are ubiquitous in stellar environments and are characterized by high temperature plasma emitting a considerable fraction of their energy as radiation. The physical structure of these shocks is complex and experimental benchmarks are needed to provide a deeper understanding of the physics at play. In addition, experiments provide unique data for testing radiation hydrodynamics codes which, in turn, are used to model astrophysical phenomena.Radiative shocks have been studied on various high-energy laser facilities for more than a decade, highlighting the importance of radiation on the plasma dynamics. Particularly the PALS facility has focused in producing radiative shocks with typical velocities of ~50-60 km s-1 in xenon at a fraction of a bar. In addition PALS has the unique capability of producing the most powerful XUV laser available today (21.2 nm (58.4 eV), 0.15 ns), opening the door to new diagnostics of dense plasmas. Here we present results of XUV imaging of the precursor and post-shock structure of radiative shocks generated in xenon in this facility, together with time-and-space resolved measurements of the XUV self-emission using fast diode. The experimental results are interpreted with the help of 2D ARWEN radiative hydrodynamics simulations and state-of-the art monochromatic opacities.
ISSN: 1574-1818
DOI: 10.1016/j.hedp.2015.01.003
Source: High Energy Density Physics[ISSN 1574-1818],v. 17, p. 106-113
Appears in Collections:Artículos
Show full item record

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.