Please use this identifier to cite or link to this item:
Title: Challenges of an autonomous wildfire geolocation system based on synthetic vision technology
Authors: Araña Pulido, Víctor Alexis 
Cabrera-Almeida, Francisco 
Pérez Mato, Javier 
Dorta-Naranjo, B. Pablo 
Hernández-Rodríguez, Silvia
Jiménez Yguacel, Eugenio 
UNESCO Clasification: 332506 Comunicaciones por satélite
250505 Teoría de la localización
Keywords: Thermography
Sensor networks, et al
Issue Date: 2018
Journal: Sensors 
Abstract: Thermographic imaging has been the preferred technology for the detection and tracking of wildfires for many years. Thermographic cameras provide some very important advantages, such as the ability to remotely detect hotspots which could potentially turn into wildfires if the appropriate conditions are met. Also, they can serve as a key preventive method, especially when the 30-30-30 rule is met, which describes a situation where the ambient temperature is higher than 30 ∘ C, the relative humidity is lower than 30%, and the wind speed is higher than 30 km/h. Under these circumstances, the likelihood of a wildfire outburst is quite high, and its effects can be catastrophic due to the high-speed winds and dry conditions. If this sort of scenario actually occurs, every possible technological advantage shall be used by firefighting teams to enable the rapid and efficient coordination of their response teams and to control the wildfire following a safe and well-planned strategy. However, most of the early detection methods for wildfires, such as the aforementioned thermographic cameras, lack a sufficient level of automation and usually rely on human interaction, imposing high degrees of subjectivity and latency. This is especially critical when a high volume of data is required in real time to correctly support decision-making scenarios during the wildfire suppression tasks. The present paper addresses this situation by analyzing the challenges faced by a fully autonomous wildfire detection and a tracking system containing a fully automated wildfire georeferencing system based on synthetic vision technology. Such a tool would provide firefighting teams with a solution capable of continuously surveilling a particular area and completely autonomously identifying and providing georeferenced information on current or potential wildfires in real time.
ISSN: 1424-8220
DOI: 10.3390/s18113631
Source: Sensors (Basel, Switzerland) [ISSN 1424-8220], v. 18 (11), 3631
Appears in Collections:Artículos
Adobe PDF (2,21 MB)
Show full item record


checked on Sep 19, 2021


checked on Sep 19, 2021

Page view(s)

checked on Jul 10, 2021


checked on Jul 10, 2021

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.