Please use this identifier to cite or link to this item:
Title: Oxidation of Fe(II) in natural waters at high nutrient concentrations
Authors: Gonzalez, Aridane G. 
Santana-Casiano, J. Magdalena 
Perez, Norma 
Gonzalez-Davila, Melchor 
UNESCO Clasification: 23 Química
2391 Química ambiental
Keywords: Oxidation
Issue Date: 2010
Project: Estudio Del Comportamiento Químico Del Hierro en El Medio Marino en Presencia de Compuestos Orgánicos de Origen Fitoplanctónico 
Journal: Environmental science & technology 
Abstract: The Fe(II) oxidation kinetic was studied in seawater enriched with nutrients as a function of pH (7.2−8.2), temperature (5−35 °C), and salinity (10−36.72) and compared with the same parameters in seawater media. The effect of nitrate (0−1.77 × 10−3 M), phosphate (0−5.80 × 10−5 M) and silicate (0−2.84 × 10−4 M) was studied at pH 8.0 and 25 °C. The experimental results demonstrated that Fe(II) oxidation was faster in high nutrient concentrations affecting the lifetime of Fe(II) in nutrient rich waters. Silicate displayed the most significant effects on the Fe(II) oxidation rate with values similar to those determined in seawater enriched with all the nutrients. A kinetic model was applied to the experimental results in order to account for changes in the speciation and to compute the fractional contribution of each Fe(II) species to the total rate constant as a function of pH. FeH3SiO4+ played a key role in the Fe(II) speciation, dominating the process at pH over 8.4. At pH 8.0, FeH3SiO4+ represented 18% of the total Fe(II) species. Model results show that when the concentration of silicate is 3 × 10−5 M as in high nutrient low chlorophyll areas, FeH3SiO4+ contributed at pH 8.0 by 4% increasing the rate to 11% at 1.4 × 10−4 M. The effect of nutrients, especially silicate, must be considered in any further study in seawater media cultures and eutrophic oceanic areas.
ISSN: 0013-936X
DOI: 10.1021/es1009218
Source: Environmental Science and Technology [ISSN 0013-936X], v. 44 (21), p. 8095-8101
Appears in Collections:Artículos
Show full item record

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.