Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45616
Campo DC Valoridioma
dc.contributor.authorGonzalez, Aridane G.en_US
dc.contributor.authorMombo, Stéphaneen_US
dc.contributor.authorLeflaive, Joséphineen_US
dc.contributor.authorLamy, Alexandreen_US
dc.contributor.authorPokrovsky, Oleg S.en_US
dc.contributor.authorRols, Jean Lucen_US
dc.contributor.otherGonzalez, Aridane G.-
dc.contributor.otherLeflaive, Josephine-
dc.date.accessioned2018-11-22T11:14:17Z-
dc.date.available2018-11-22T11:14:17Z-
dc.date.issued2015en_US
dc.identifier.issn0944-1344en_US
dc.identifier.urihttp://hdl.handle.net/10553/45616-
dc.description.abstractDue to the significant increase in nanoparticle production and especially that of silver nanoparticles over the past decade, the toxicity of silver in both ionic (Ag+) and nanoparticulate (AgNPs) form must be studied in detail in order to understand their impact on natural ecosystems. A comparative study of the effect of AgNPs and ionic silver on two independent phototrophic biofilms was conducted in a rotating annular bioreactor (RAB) operating under constant conditions. The concentration of dissolved silver in the inlet solution was progressively increased every 4 days of exposure, from 0.1 to 100 μg L−1. In the course of the 40-day experiment, biofilm samples were collected to determine the evolution of biomass, chlorophyll-a, as well as photosynthetic and heterotrophic enzymatic activities in response to silver addition. Analysis of both dissolved and particulate silver allowed quantification of the distribution coefficient and uptake rate constants. The presence of both AgNPs and Ag+ produced significant changes in the biofilm structure, decreasing the relative percentage of Diatomophyceae and Cyanophyceae and increasing the relative percentage of Chlorophyceae. The accumulation capacity of the phototrophic biofilm with respect to ionic silver and the corresponding distribution coefficients were an order of magnitude higher than those of the phototrophic biofilm with respect to AgNPs. Higher levels of AgNPs decreased the biomass from 8.6 ± 0.2 mg cm−2 for 0–10 μg L−1 AgNPs to 6.0 ± 0.1 mg cm−2 for 100 μg L−1 added AgNPs, whereas ionic silver did not have any toxic effect on the biofilm growth up to 100 μg L−1 of added Ag+. At the same time, AgNPs did not significantly affect the photosynthetic activity of the biofilm surface communities compared to Ag+. It can thus be hypothesized that negatively charged AgNPs may travel through the biofilm water channels, thereby affecting the whole biofilm structure. In contrast, positively charged Ag+ is bound at the cell surfaces and EPS, thus blocking its further flux within the biofilm layers. On the whole, the phototrophic biofilm demonstrated significant capacities to accumulate silver within the surface layers. The main mechanism to avoid the toxic effects is metal complexation with exopolysaccharides and accumulation within cell walls, especially pronounced under Ag+ stress. The significant AgNPs and Ag+ uptake capacities of phototrophic biofilm make it a highly resistant ecosystem in silver-polluted river waters.en_US
dc.languageengen_US
dc.relation.ispartofEnvironmental Science and Pollution Researchen_US
dc.sourceEnvironmental Science and Pollution Research [ISSN 0944-1344], v. 22 (11), p. 8412-8424en_US
dc.subject2210 Química físicaen_US
dc.subject.otherAgNPsen_US
dc.subject.otherIonic silveren_US
dc.subject.otherPhototrophic biofilmen_US
dc.subject.otherBioreactoren_US
dc.titleSilver nanoparticles impact phototrophic biofilm communities to a considerably higher degree than ionic silveren_US
dc.typeinfo:eu-repo/semantics/articlees
dc.typeArticlees
dc.identifier.doi10.1007/s11356-014-3978-1en_US
dc.identifier.scopus2-s2.0-84929836832-
dc.identifier.isi000354960300039-
dcterms.isPartOfEnvironmental Science And Pollution Research-
dcterms.sourceEnvironmental Science And Pollution Research[ISSN 0944-1344],v. 22 (11), p. 8412-8424-
dc.contributor.authorscopusid37031064100-
dc.contributor.authorscopusid56358143400-
dc.contributor.authorscopusid8214674300-
dc.contributor.authorscopusid56425793600-
dc.contributor.authorscopusid35280747200-
dc.contributor.authorscopusid6701599786-
dc.description.lastpage8424-
dc.identifier.issue11-
dc.description.firstpage8412-
dc.relation.volume22-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000354960300039-
dc.contributor.daisngid1874718-
dc.contributor.daisngid3933661-
dc.contributor.daisngid1495389-
dc.contributor.daisngid7661811-
dc.contributor.daisngid91335-
dc.contributor.daisngid912864-
dc.identifier.investigatorRIDG-2520-2011-
dc.identifier.investigatorRIDF-2075-2018-
dc.identifier.ulpgces
dc.description.sjr0,879
dc.description.jcr2,76
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Química-
crisitem.author.orcid0000-0002-5637-8841-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameGonzález González, Aridane-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

38
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

33
actualizado el 17-nov-2024

Visitas

49
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.