Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/45550
Title: | Time-dependent and radiation field effects on collisional-radiative simulations of radiative properties of blast waves launched in clusters of xenon | Authors: | Rodriguez, R. Espinosa, G. Gil, J. M. Rubiano, J. G. Mendoza, M.A. Martel, P. Minguez, Emilio Symes, Daniel R. Hohenberger, Matthias Smith, Roland A. |
UNESCO Clasification: | 2207 Física atómica y nuclear | Keywords: | Laboratory astrophysics Radiative blast waves Xenon plasmas Collisional-radiative simulations |
Issue Date: | 2015 | Project: | Determinación de Propiedades Radiativas, Termodinamicas y Diagnosis Espectroscopica de Plasmas de Interés Científico-Tecnológico | Journal: | High Energy Density Physics | Abstract: | Radiative shock waves are ubiquitous throughout the universe and play a crucial role in the transport of energy into the interstellar medium. This fact has led to many efforts to scale the astrophysical phenomena to accessible conditions. In some laboratory experiments radiative blast waves are launched in clusters of gases by means of the direct deposition of the laser energy. In this work, by using a collisional-radiative model, we perform an analysis of the plasma level populations and radiative properties of a blast wave launched in a xenon cluster. In particular, for both the shocked and unshocked material, we study the influence of different effects such as LTE, steady-state or time-dependent NLTE simulations, plasma self-absorption or external radiation field in the determination of those properties and also in the diagnosis of the electron temperature of the blast wave. | URI: | http://hdl.handle.net/10553/45550 | ISSN: | 1574-1818 | DOI: | 10.1016/j.hedp.2014.09.002 | Source: | High Energy Density Physics [ISSN 1574-1818], v. 17 (Part A), p. 119-128 |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
1
checked on Sep 8, 2024
WEB OF SCIENCETM
Citations
1
checked on Sep 8, 2024
Page view(s)
174
checked on Jun 22, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.