Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45495
Título: Early diagnosis of neurodegenerative diseases by handwritten signature analysis
Autores/as: Pirlo, Giuseppe
Diaz, Moises 
Ferrer, Miguel Angel 
Impedovo, Donato
Occhionero, Fabrizio
Zurlo, Urbano
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Handwritten signature
Alzheimer Pre-diagnosis system
Pattern Recognition
Fecha de publicación: 2015
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 18th International Conference on Image Analysis and Processing (ICIAP 2015) 
18th International Conference on Image Analysis and Processing, ICIAP 2015 BioFor, CTMR, RHEUMA, ISCA, MADiMa, SBMI, and QoEM (ICIAP 2015) 
Resumen: Handwritten signatures are generally considered a powerful biometric traits for personal verification. Recently, handwritten signatures have been also investigated for early diagnosis of neurodegenerative diseases. This paper presents a new approach for early diagnosis of neurodegenerative diseases by the analysis of handwritten dynamic signatures. For the purpose, the sigma-lognormal model was considered and dynamic parameters are extracted for signatures. Based on these parameters, the health condition of the signer is analysed in terms of Alzheimer disease. The approach is cheap and effective, therefore it can be considered as a very promising direction for further research.
URI: http://hdl.handle.net/10553/45495
ISBN: 978-3-319-23221-8
ISSN: 0302-9743
DOI: 10.1007/978-3-319-23222-5_36
Fuente: New Trends in Image Analysis and Processing -- ICIAP 2015 Workshops. ICIAP 2015. Lecture Notes in Computer Science, v. 9281 LNCS, p. 290-297
Colección:Capítulo de libro
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.