Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/45493
Title: A survey on traffic light detection
Authors: Diaz, Moises 
Cerri, Pietro
Pirlo, Giuseppe
Ferrer, Miguel A. 
Impedovo, Donato
UNESCO Clasification: 3307 Tecnología electrónica
Keywords: Traffic light detection survey
Pattern Recognition
Image Processing and Computer Vision
Issue Date: 2015
Publisher: Springer 
Journal: Lecture Notes in Computer Science 
Conference: 18th International Conference on Image Analysis and Processing (ICIAP) 
18th International Conference on Image Analysis and Processing, ICIAP 2015 BioFor, CTMR, RHEUMA, ISCA, MADiMa, SBMI, and QoEM 
Abstract: Traffic light detection is an important matter in urban environments during the transition to fully autonomous driving. Many literature has been generated in the recent years approaching different pattern recognition strategies. In this paper we present a survey summarizing relevant works in the field of detection of both suspended and supported traffic light. This survey organizes different methods highlighting main reasearch areas in the computer vision field.
URI: https://accedacris.ulpgc.es/handle/10553/45493
ISBN: 978-3-319-23221-8
ISSN: 0302-9743
DOI: 10.1007/978-3-319-23222-5_25
Fuente: New Trends in Image Analysis and Processing -- ICIAP 2015 Workshops. ICIAP 2015. Lecture Notes in Computer Science, v. 9281 LNCS, p. 201-208
Colección:Capítulo de libro
Vista completa

Citas SCOPUSTM   

33
actualizado el 25-may-2025

Citas de WEB OF SCIENCETM
Citations

26
actualizado el 25-may-2025

Visitas

80
actualizado el 12-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.