Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45493
Título: A survey on traffic light detection
Autores/as: Diaz, Moises 
Cerri, Pietro
Pirlo, Giuseppe
Ferrer, Miguel A. 
Impedovo, Donato
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Traffic light detection survey
Pattern Recognition
Image Processing and Computer Vision
Fecha de publicación: 2015
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 18th International Conference on Image Analysis and Processing (ICIAP) 
18th International Conference on Image Analysis and Processing, ICIAP 2015 BioFor, CTMR, RHEUMA, ISCA, MADiMa, SBMI, and QoEM 
Resumen: Traffic light detection is an important matter in urban environments during the transition to fully autonomous driving. Many literature has been generated in the recent years approaching different pattern recognition strategies. In this paper we present a survey summarizing relevant works in the field of detection of both suspended and supported traffic light. This survey organizes different methods highlighting main reasearch areas in the computer vision field.
URI: http://hdl.handle.net/10553/45493
ISBN: 978-3-319-23221-8
ISSN: 0302-9743
DOI: 10.1007/978-3-319-23222-5_25
Fuente: New Trends in Image Analysis and Processing -- ICIAP 2015 Workshops. ICIAP 2015. Lecture Notes in Computer Science, v. 9281 LNCS, p. 201-208
Colección:Capítulo de libro
Vista completa

Citas SCOPUSTM   

32
actualizado el 01-dic-2024

Citas de WEB OF SCIENCETM
Citations

25
actualizado el 24-nov-2024

Visitas

80
actualizado el 12-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.