Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45492
Campo DC Valoridioma
dc.contributor.authorFerrer, Miguel A.en_US
dc.contributor.authorDiaz-Cabrera, Moisesen_US
dc.contributor.authorMorales, Aythamien_US
dc.contributor.otherFerrer, Miguel A-
dc.contributor.otherMorales, Aythami-
dc.contributor.otherCarmona-Duarte, Cristina-
dc.contributor.otherDiaz, Moises-
dc.date.accessioned2018-11-22T10:16:19Z-
dc.date.available2018-11-22T10:16:19Z-
dc.date.issued2015en_US
dc.identifier.issn0162-8828en_US
dc.identifier.urihttp://hdl.handle.net/10553/45492-
dc.description.abstractIn this paper we propose a new method for generating synthetic handwritten signature images for biometric applications. The procedures we introduce imitate the mechanism of motor equivalence which divides human handwriting into two steps: the working out of an effector independent action plan and its execution via the corresponding neuromuscular path. The action plan is represented as a trajectory on a spatial grid. This contains both the signature text and its flourish, if there is one. The neuromuscular path is simulated by applying a kinematic Kaiser filter to the trajectory plan. The length of the filter depends on the pen speed which is generated using a scalar version of the sigma lognormal model. An ink deposition model, applied pixel by pixel to the pen trajectory, provides realistic static signature images. The lexical and morphological properties of the synthesized signatures as well as the range of the synthesis parameters have been estimated from real databases of real signatures such as the MCYT Off-line and the GPDS960GraySignature corpuses. The performance experiments show that by tuning only four parameters it is possible to generate synthetic identities with different stability and forgers with different skills. Therefore it is possible to create datasets of synthetic signatures with a performance similar to databases of real signatures. Moreover, we can customize the created dataset to produce skilled forgeries or simple forgeries which are easier to detect, depending on what the researcher needs. Perceptual evaluation gives an average confusion of 44.06 percent between real and synthetic signatures which shows the realism of the synthetic ones. The utility of the synthesized signatures is demonstrated by studying the influence of the pen type and number of users on an automatic signature verifier.en_US
dc.languageengen_US
dc.publisher0162-8828-
dc.relation.ispartofIEEE Transactions on Pattern Analysis and Machine Intelligenceen_US
dc.sourceIEEE Transactions on Pattern Analysis and Machine Intelligence[ISSN 0162-8828],v. 37 (6867369), p. 667-680en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherFinite impulse response filtersen_US
dc.subject.otherWritingen_US
dc.subject.otherBiometrics (access control)en_US
dc.subject.otherKinematicsen_US
dc.subject.otherTrajectoryen_US
dc.titleStatic signature synthesis: A neuromotor inspired approach for biometricsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TPAMI.2014.2343981
dc.identifier.scopus84923052487-
dc.identifier.isi000349626200014-
dcterms.isPartOfIeee Transactions On Pattern Analysis And Machine Intelligence-
dcterms.sourceIeee Transactions On Pattern Analysis And Machine Intelligence[ISSN 0162-8828],v. 37 (3), p. 667-680-
dc.contributor.authorscopusid55636321172-
dc.contributor.authorscopusid36760594500-
dc.contributor.authorscopusid24476050500-
dc.description.lastpage680en_US
dc.identifier.issue6867369-
dc.description.firstpage667en_US
dc.relation.volume37en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000349626200014-
dc.contributor.daisngid233119-
dc.contributor.daisngid2065739-
dc.contributor.daisngid31498511
dc.contributor.daisngid1418808-
dc.description.notasIn this paper we propose a new method for generating synthetic handwritten signature images for biometric applications. The procedures we introduce imitate the mechanism of motor equivalence which divides human handwriting into two steps: the working out of an effector independent action plan and its execution via the corresponding neuromuscular path. The action plan is represented as a trajectory on a spatial grid. This contains both the signature text and its flourish, if there is one. The neuromuscular path is simulated by applying a kinematic Kaiser filter to the trajectory plan. The length of the filter depends on the pen speed which is generated using a scalar version of the sigma lognormal model. An ink deposition model, applied pixel by pixel to the pen trajectory, provides realistic static signature images. The lexical and morphological properties of the synthesized signatures as well as the range of the synthesis parameters have been estimated from real databases of real signatures such as the MCYT Off-line and the GPDS960GraySignature corpuses. The performance experiments show that by tuning only four parameters it is possible to generate synthetic identities with different stability and forgers with different skills. Therefore it is possible to create datasets of synthetic signatures with a performance similar to databases of real signatures. Moreover, we can customize the created dataset to produce skilled forgeries or simple forgeries which are easier to detect, depending on what the researcher needs. Perceptual evaluation gives an average confusion of 44.06 percent between real and synthetic signatures which shows the realism of the synthetic ones. The utility of the synthesized signatures is demonstrated by studying the influence of the pen type and number of users on an automatic signature verifier.en_US
dc.identifier.investigatorRIDL-3863-2013-
dc.identifier.investigatorRIDL-2529-2013-
dc.identifier.investigatorRIDE-9031-2010-
dc.identifier.investigatorRIDL-3637-2013-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Ferrer, MA
dc.contributor.wosstandardWOS:Diaz-Cabrera, M
dc.contributor.wosstandardWOS:Morales, A
dc.date.coverdateMarzo 2015
dc.identifier.ulpgces
dc.description.sjr5,357
dc.description.jcr6,077
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.author.fullNameDíaz Cabrera, Moisés-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

107
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

83
actualizado el 15-dic-2024

Visitas

75
actualizado el 10-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.