Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/45491
Título: | Modeling the lexical morphology of Western handwritten signatures | Autores/as: | Diaz-Cabrera, Moises Ferrer, Miguel A. Morales, Aythami |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Hidden Markov models Handwriting recognition |
Fecha de publicación: | 2015 | Proyectos: | "Sintesis de Muestras Biométricas Para Aplicaciones de Salud y Seguridad" | Publicación seriada: | PLoS ONE | Resumen: | A handwritten signature is the final response to a complex cognitive and neuromuscular process which is the result of the learning process. Because of the many factors involved in signing, it is possible to study the signature from many points of view: graphologists, forensic experts, neurologists and computer vision experts have all examined them. Researchers study written signatures for psychiatric, penal, health and automatic verification purposes. As a potentially useful, multi-purpose study, this paper is focused on the lexical morphology of handwritten signatures. This we understand to mean the identification, analysis, and description of the signature structures of a given signer. In this work we analyze different public datasets involving 1533 signers from different Western geographical areas. Some relevant characteristics of signature lexical morphology have been selected, examined in terms of their probability distribution functions and modeled through a General Extreme Value distribution. This study suggests some useful models for multi-disciplinary sciences which depend on handwriting signatures. | URI: | http://hdl.handle.net/10553/45491 | ISSN: | 1932-6203 | DOI: | 10.1371/journal.pone.0123254 | Fuente: | PLoS ONE [EISSN 1932-6203], v. 10 (e0123254) |
Colección: | Artículos |
Citas SCOPUSTM
23
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
19
actualizado el 15-dic-2024
Visitas
81
actualizado el 27-jul-2024
Descargas
138
actualizado el 27-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.