Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45487
Título: Towards an automatic on-line signature verifier using only one reference per signer
Autores/as: Diaz, Moises 
Fischer, Andreas
Plamondon, Rejean
Ferrer, Miguel A. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Hidden Markov models
Handwriting recognition
Integrated circuit modeling
Atmospheric modeling
Protocols
Fecha de publicación: 2015
Publicación seriada: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR
Conferencia: 13th IAPR International Conference on Document Analysis and Recognition (ICDAR) 
13th International Conference on Document Analysis and Recognition, ICDAR 2015 
Resumen: What can be done with only one enrolled real hand-written signature in Automatic Signature Verification (ASV)? Using 5 or 10 signatures for training is the most common case to evaluate ASV. In the scarcely addressed case of only one available signature for training, we propose to use modified duplicates. Our novel technique relies on a fully neuromuscular representation of the signatures based on the Kinematic Theory of rapid human movements and its Sigma-Lognormal model. This way, a real on-line signature is converted into the Sigma-Lognormal model domain. The model parameters are then varied to generate new duplicated signatures.
URI: http://hdl.handle.net/10553/45487
ISBN: 9781479918058
ISSN: 1520-5363
DOI: 10.1109/ICDAR.2015.7333838
Fuente: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR[ISSN 1520-5363],v. 2015-November (7333838), p. 631-635
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.