Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45446
Campo DC Valoridioma
dc.contributor.authorCaballero, J.en_US
dc.contributor.authorLópez, B.en_US
dc.contributor.authorSadarangani, K.en_US
dc.date.accessioned2018-11-22T09:54:42Z-
dc.date.available2018-11-22T09:54:42Z-
dc.date.issued2007en_US
dc.identifier.issn1439-8516en_US
dc.identifier.urihttp://hdl.handle.net/10553/45446-
dc.description.abstractWe use a technique associated with measures of noncompactness to prove the existence of nondecreasing solutions to an integral equation with linear modi. cation of the argument in the space C[ 0, 1]. In the last thirty years there has been a great deal of work in the field of differential equations with a modified argument. A special class is represented by the differential equation with affine modification of the argument which can be delay differential equations or differential equations with linear modi. cations of the argument. In this case we study the following integral equation x( t) = a( t) + ( Tx)( t) integral(sigma( t))(0) u( t, s, x( s), x(lambda s)) ds 0 < lambda< 1 which can be considered in connection with the following Cauchy problem x'( t) = u( t, s, x( t), x(lambda t)), t is an element of[ 0, 1], 0 <. < 1 x( 0) = u(0).en_US
dc.languageengen_US
dc.relation.ispartofActa Mathematica Sinica, English Seriesen_US
dc.sourceActa Mathematica Sinica, English Series [ISSN 1439-8516],v. 23 (9), p. 1719-1728en_US
dc.subject120215 Ecuaciones integralesen_US
dc.subject120219 Ecuaciones diferenciales ordinariasen_US
dc.subject1202 Análisis y análisis funcionalen_US
dc.subject.otherMeasure of noncompactnessen_US
dc.subject.otherFixed point theoremen_US
dc.subject.otherNondecreasing solutionsen_US
dc.titleExistence of nondecreasing and continuous solutions of an integral equation with linear modification of the argumenten_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10114-007-0956-2en_US
dc.identifier.scopus34547547720-
dc.identifier.isi000248579800019-
dc.contributor.authorscopusid7102010775-
dc.contributor.authorscopusid36623836800-
dc.contributor.authorscopusid55964919000-
dc.identifier.eissn1439-7617-
dc.description.lastpage1728en_US
dc.identifier.issue9-
dc.description.firstpage1719en_US
dc.relation.volume23en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid2480670-
dc.contributor.daisngid17438383-
dc.contributor.daisngid298123-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Caballero, J-
dc.contributor.wosstandardWOS:Lopez, B-
dc.contributor.wosstandardWOS:Sadarangani, K-
dc.date.coverdateSeptiembre 2007en_US
dc.identifier.ulpgcen_US
dc.description.jcr0,562
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0001-8842-426X-
crisitem.author.orcid0000-0002-1484-0890-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameCaballero Mena, Josefa-
crisitem.author.fullNameLópez Brito, María Belén-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

21
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

19
actualizado el 17-nov-2024

Visitas

149
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.