Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/45002
Título: | Lossy hyperspectral image compression on a graphics processing unit: parallelization strategy and performance evaluation | Autores/as: | Santos, Lucana Magli, Enrico Vitulli, Raffaele Núñez, Antonio López, José F. Sarmiento, Roberto |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Image compression Image coding SPIHT algorithm |
Fecha de publicación: | 2013 | Publicación seriada: | Journal of Applied Remote Sensing | Resumen: | There is an intense necessity for the development of new hardware architectures for the implementation of algorithms for hyperspectral image compression on board satellites. Graphics processing units (GPUs) represent a very attractive opportunity, offering the possibility to dramatically increase the computation speed in applications that are data and task parallel. An algorithm for the lossy compression of hyperspectral images is implemented on a GPU using Nvidia computer unified device architecture (CUDA) parallel computing architecture. The parallelization strategy is explained, with emphasis on the entropy coding and bit packing phases, for which a more sophisticated strategy is necessary due to the existing data dependencies. Experimental results are obtained by comparing the performance of the GPU implementation with a single-threaded CPU implementation, showing high speedups of up to 15.41. A profiling of the algorithm is provided, demonstrating the high performance of the designed parallel entropy coding phase. The accuracy of the GPU implementation is presented, as well as the effect of the configuration parameters on performance. The convenience of using GPUs for on-board processing is demonstrated, and solutions to the potential difficulties encountered when accelerating hyperspectral compression algorithms are proposed, if space-qualified GPUs become a reality in the near future. | URI: | http://hdl.handle.net/10553/45002 | ISSN: | 1931-3195 | DOI: | 10.1117/1.JRS.7.074599 | Fuente: | Journal of Applied Remote Sensing,v. 7 (12485SS) |
Colección: | Artículos |
Citas SCOPUSTM
9
actualizado el 24-nov-2024
Citas de WEB OF SCIENCETM
Citations
6
actualizado el 24-nov-2024
Visitas
100
actualizado el 04-may-2024
Descargas
99
actualizado el 04-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.