Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45002
Título: Lossy hyperspectral image compression on a graphics processing unit: parallelization strategy and performance evaluation
Autores/as: Santos, Lucana 
Magli, Enrico
Vitulli, Raffaele
Núñez, Antonio 
López, José F. 
Sarmiento, Roberto 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Image compression
Image coding
SPIHT algorithm
Fecha de publicación: 2013
Publicación seriada: Journal of Applied Remote Sensing 
Resumen: There is an intense necessity for the development of new hardware architectures for the implementation of algorithms for hyperspectral image compression on board satellites. Graphics processing units (GPUs) represent a very attractive opportunity, offering the possibility to dramatically increase the computation speed in applications that are data and task parallel. An algorithm for the lossy compression of hyperspectral images is implemented on a GPU using Nvidia computer unified device architecture (CUDA) parallel computing architecture. The parallelization strategy is explained, with emphasis on the entropy coding and bit packing phases, for which a more sophisticated strategy is necessary due to the existing data dependencies. Experimental results are obtained by comparing the performance of the GPU implementation with a single-threaded CPU implementation, showing high speedups of up to 15.41. A profiling of the algorithm is provided, demonstrating the high performance of the designed parallel entropy coding phase. The accuracy of the GPU implementation is presented, as well as the effect of the configuration parameters on performance. The convenience of using GPUs for on-board processing is demonstrated, and solutions to the potential difficulties encountered when accelerating hyperspectral compression algorithms are proposed, if space-qualified GPUs become a reality in the near future.
URI: http://hdl.handle.net/10553/45002
ISSN: 1931-3195
DOI: 10.1117/1.JRS.7.074599
Fuente: Journal of Applied Remote Sensing,v. 7 (12485SS)
Colección:Artículos
miniatura
Adobe PDF (1,29 MB)
Vista completa

Citas SCOPUSTM   

9
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 24-nov-2024

Visitas

100
actualizado el 04-may-2024

Descargas

99
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.