Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44978
Título: | HELICoiD: Interdisciplinary and collaborative project for real-time brain cancer detection | Autores/as: | Salvador, Rubén Ortega, Samuel Madroñal, Daniel Fabelo, Himar Lazcano, Raquel Marrero Callicó, Gustavo Iván Juárez, Eduardo Sarmiento, Roberto Sanz, César |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Imaging techniques Spectroscopy Compressive spectral |
Fecha de publicación: | 2017 | Publicación seriada: | ACM International Conference on Computing Frontiers 2017, CF 2017 | Conferencia: | 14th ACM International Conference on Computing Frontiers, CF 2017 | Resumen: | The HELICoiD project is a European FP7 FET Open funded project. It is an interdisciplinary work at the edge of the biomedical domain, bringing together neurosurgeons, computer scientists and electronic engineers. The main target of the project was to provide a working demonstrator of an intraoperative image-guided surgery system for real-time brain cancer detection, in order to assist neurosurgeons during tumour resection procedures. One of the main problems associated to brain tumours is its infiltrative nature, which makes complete tumour resection a highly difficult task. With the combination of Hyperspectral Imaging and Machine Learning techniques, the project aimed at demonstrating that a precise determination of tumour boundaries was possible, helping this way neurosurgeons to minimize the amount of removed healthy tissue. The project partners involved, besides different universities and companies, two hospitals where the demonstrator was tested during surgical procedures. This paper introduces the difficulties around brain tumor resection, stating the main objectives of the project and presenting the materials, methodologies and platforms used to propose a solution. A brief summary of the main results obtained is also included. © 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM. | URI: | http://hdl.handle.net/10553/44978 | ISBN: | 9781450344876 | DOI: | 10.1145/3075564.3076262 | Fuente: | ACM International Conference on Computing Frontiers 2017, CF 2017, p. 313-318 |
Colección: | Actas de congresos |
Citas SCOPUSTM
9
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
4
actualizado el 17-nov-2024
Visitas
59
actualizado el 22-jul-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.