Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44973
Título: Random forest training stage acceleration using graphics processing units
Autores/as: Hernández Guedes, Abián 
Fabelo, Himar 
Ortega, Samuel 
Báez Quevedo, Abelardo 
Callicó, Gustavo M. 
Sarmiento Rodríguez, Roberto 
Clasificación UNESCO: 3308 Ingeniería y tecnología del medio ambiente
Palabras clave: Hyperspectral Imaging
Supervised Learning
High Performance Computing
Graphical Processing Units
Random Forest
Fecha de publicación: 2018
Publicación seriada: Proceedings (Conference on Design of Circuits and Integrated Systems) 
Conferencia: 32nd Conference on Design of Circuits and Integrated Systems, DCIS 2017 
Resumen: Graphics Processing Units (GPUs) are platforms very appropriated to accelerate processes with high computational load, like the supervised classification of hyperspectral images. The supervised classifier Random Forest has proved to be a good candidate to classify hyperspectral images and currently constitutes an emerging technology for medical diagnosis. The objective of this paper is focused in the Random Forest training phase acceleration using GPUs, starting from an efficient CPU implementation. For some applications, it is necessary to refine the classification model depending on the new acquired samples. In this paper are presented solutions for two bottlenecks identified in the training stage in order to accelerate the algorithm. The different solutions for the bottlenecks provided in this research study have demonstrated that GPU implementation is a promising technique to generate models in shorter time. With this implementation it is possible to achieve the training process in real-time.
URI: http://hdl.handle.net/10553/44973
ISBN: 978-1-5386-5108-7
ISSN: 2471-6170
DOI: 10.1109/DCIS.2017.8311636
Fuente: 2017 32nd Conference on Design of Circuits and Integrated Systems, DCIS 2017 - Proceedings,v. 2017-November, p. 1-6
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.