Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44518
Campo DC Valoridioma
dc.contributor.authorGonzález, Luisen_US
dc.date.accessioned2018-11-22T00:16:12Z-
dc.date.available2018-11-22T00:16:12Z-
dc.date.issued2010en_US
dc.identifier.isbn978-90-481-9418-6en_US
dc.identifier.issn1876-1100en_US
dc.identifier.urihttp://hdl.handle.net/10553/44518-
dc.description.abstractMany different phenomena, arising from scientific, technical or social areas, can be modeled by a system depending on a certain number n of random Boolean variables. The so-called complex stochastic Boolean systems (CSBSs) are characterized by the ordering between the occurrence probabilities Pr{u} of the 2 n associated binary strings of length n, i.e., u=(u 1,…,u n ) ∈ {0,1} n . The intrinsic order defined on {0,1} n provides us with a simple positional criterion for ordering the binary n-tuple probabilities without computing them, simply looking at the relative positions of their 0s and 1s. For every given binary n-tuple u, this paper presents two simple formulas – based on the positions of the 1-bits (0-bits, respectively) in u – for counting (and also for rapidly generating, if desired) all the binary n-tuples v whose occurrence probabilities Pr{v} are always less than or equal to (greater than or equal to, respectively) Pr{u}. Then, from these formulas, we determine the closed interval covering all possible values of the rank (position) of u in the list of all binary n-tuples arranged by decreasing order of their occurrence probabilities. Further, the length of this so-called ranking interval for u, also provides the number of binary n-tuples v incomparable by intrinsic order with u. Results are illustrated with the intrinsic order graph, i.e., the Hasse diagram of the partial intrinsic order.en_US
dc.languageengen_US
dc.relationAvances en Simulación de Campos de Viento y Radiación Solar.en_US
dc.relation.ispartofLecture Notes in Electrical Engineeringen_US
dc.sourceAo SI., Rieger B., Amouzegar M. (eds) Machine Learning and Systems Engineering. Lecture Notes in Electrical Engineering, vol 68. Springer, Dordrechten_US
dc.subject110202 Algebra de Booleen_US
dc.subject12 Matemáticasen_US
dc.subject1208 Probabilidaden_US
dc.titleRanking intervals in complex stochastic Boolean systems using intrinsic orderingen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.relation.conferenceInternational Conference on Advances in Machine Learning and Systems Engineering
dc.identifier.doi10.1007/978-90-481-9419-3_31
dc.identifier.scopus78651544194-
dc.contributor.authorscopusid35248076500-
dc.description.lastpage410-
dc.description.firstpage397-
dc.relation.volume68-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.eisbn978-90-481-9419-3-
dc.utils.revisionen_US
dc.date.coverdateNoviembre 2010
dc.identifier.conferenceidevents121393
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate20-10-2009-
crisitem.event.eventsenddate22-10-2009-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.fullNameGonzález Sánchez, Luis-
crisitem.project.principalinvestigatorMontenegro Armas, Rafael-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

7
actualizado el 30-mar-2025

Visitas

95
actualizado el 13-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.