Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/44518
DC FieldValueLanguage
dc.contributor.authorGonzález, Luisen_US
dc.date.accessioned2018-11-22T00:16:12Z-
dc.date.available2018-11-22T00:16:12Z-
dc.date.issued2010en_US
dc.identifier.isbn978-90-481-9418-6en_US
dc.identifier.issn1876-1100en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/44518-
dc.description.abstractMany different phenomena, arising from scientific, technical or social areas, can be modeled by a system depending on a certain number n of random Boolean variables. The so-called complex stochastic Boolean systems (CSBSs) are characterized by the ordering between the occurrence probabilities Pr{u} of the 2 n associated binary strings of length n, i.e., u=(u 1,…,u n ) ∈ {0,1} n . The intrinsic order defined on {0,1} n provides us with a simple positional criterion for ordering the binary n-tuple probabilities without computing them, simply looking at the relative positions of their 0s and 1s. For every given binary n-tuple u, this paper presents two simple formulas – based on the positions of the 1-bits (0-bits, respectively) in u – for counting (and also for rapidly generating, if desired) all the binary n-tuples v whose occurrence probabilities Pr{v} are always less than or equal to (greater than or equal to, respectively) Pr{u}. Then, from these formulas, we determine the closed interval covering all possible values of the rank (position) of u in the list of all binary n-tuples arranged by decreasing order of their occurrence probabilities. Further, the length of this so-called ranking interval for u, also provides the number of binary n-tuples v incomparable by intrinsic order with u. Results are illustrated with the intrinsic order graph, i.e., the Hasse diagram of the partial intrinsic order.en_US
dc.languageengen_US
dc.relationAvances en Simulación de Campos de Viento y Radiación Solar.en_US
dc.relation.ispartofLecture Notes in Electrical Engineeringen_US
dc.sourceAo SI., Rieger B., Amouzegar M. (eds) Machine Learning and Systems Engineering. Lecture Notes in Electrical Engineering, vol 68. Springer, Dordrechten_US
dc.subject110202 Algebra de Booleen_US
dc.subject12 Matemáticasen_US
dc.subject1208 Probabilidaden_US
dc.titleRanking intervals in complex stochastic Boolean systems using intrinsic orderingen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.relation.conferenceInternational Conference on Advances in Machine Learning and Systems Engineering
dc.identifier.doi10.1007/978-90-481-9419-3_31
dc.identifier.scopus78651544194-
dc.contributor.authorscopusid35248076500-
dc.description.lastpage410-
dc.description.firstpage397-
dc.relation.volume68-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.eisbn978-90-481-9419-3-
dc.utils.revisionen_US
dc.date.coverdateNoviembre 2010
dc.identifier.conferenceidevents121393
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.project.principalinvestigatorMontenegro Armas, Rafael-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.fullNameGonzález Sánchez, Luis-
crisitem.event.eventsstartdate20-10-2009-
crisitem.event.eventsenddate22-10-2009-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

7
checked on Mar 30, 2025

Page view(s)

95
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.