Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44473
Título: | What limits performance during whole-body incremental exercise to exhaustion in humans? | Autores/as: | Morales Álamo, David Losa Reyna, José Torres-Peralta, Rafael Martin-Rincon, Marcos Pérez Valera, Mario Curtelin, David Ponce-González, Jesús Gustavo Santana Rodríguez, Alfredo Calbet, Jose A. L. |
Clasificación UNESCO: | 241106 Fisiología del ejercicio | Palabras clave: | Human Skeletal-Muscle Severe Acute-Hypoxia Anaerobic Energy-Release Sprint Exercise Maximal Exercise, et al. |
Fecha de publicación: | 2015 | Publicación seriada: | Journal of Physiology | Resumen: | To determine the mechanisms causing task failure during incremental exercise to exhaustion (IE), sprint performance (10 s all‐out isokinetic) and muscle metabolites were measured before (control) and immediately after IE in normoxia (PIO2: 143 mmHg) and hypoxia (PIO2: 73 mmHg) in 22 men (22 ± 3 years). After IE, subjects recovered for either 10 or 60 s, with open circulation or bilateral leg occlusion (300 mmHg) in random order. This was followed by a 10 s sprint with open circulation. Post‐IE peak power output (W peak) was higher than the power output reached at exhaustion during IE (P < 0.05). After 10 and 60 s recovery in normoxia, W peak was reduced by 38 ± 9 and 22 ± 10% without occlusion, and 61 ± 8 and 47 ± 10% with occlusion (P < 0.05). Following 10 s occlusion, W peak was 20% higher in hypoxia than normoxia (P < 0.05), despite similar muscle lactate accumulation ([La]) and phosphocreatine and ATP reduction. Sprint performance and anaerobic ATP resynthesis were greater after 60 s compared with 10 s occlusions, despite the higher [La] and [H+] after 60 s compared with 10 s occlusion recovery (P < 0.05). The mean rate of ATP turnover during the 60 s occlusion was 0.180 ± 0.133 mmol (kg wet wt)−1 s−1, i.e. equivalent to 32% of leg peak O2 uptake (the energy expended by the ion pumps). A greater degree of recovery is achieved, however, without occlusion. In conclusion, during incremental exercise task failure is not due to metabolite accumulation or lack of energy resources. Anaerobic metabolism, despite the accumulation of lactate and H+, facilitates early recovery even in anoxia. This points to central mechanisms as the principal determinants of task failure both in normoxia and hypoxia, with lower peripheral contribution in hypoxia. At the end of an incremental exercise to exhaustion a large functional reserve remains in the muscles to generate power, even at levels far above the power output at which task failure occurs, regardless of the inspiratory O2 pressure during the incremental exercise. Exhaustion (task failure) is not due to lactate accumulation and the associated muscle acidification; neither the aerobic energy pathways nor the glycolysis are blocked at exhaustion. Muscle lactate accumulation may actually facilitate early recovery after exhaustive exercise even under ischaemic conditions. Although the maximal rate of ATP provision is markedly reduced at task failure, the resynthesis capacity remaining exceeds the rate of ATP consumption, indicating that task failure during an incremental exercise to exhaustion depends more on central than peripheral mechanisms. To determine the mechanisms causing task failure during incremental exercise to exhaustion (IE), sprint performance (10 s all-out isokinetic) and muscle metabolites were measured before (control) and immediately after IE in normoxia (PIO2: 143 mmHg) and hypoxia (PIO2: 73 mmHg) in 22 men (22 ± 3 years). After IE, subjects recovered for either 10 or 60 s, with open circulation or bilateral leg occlusion (300 mmHg) in random order. This was followed by a 10 s sprint with open circulation. Post-IE peak power output (Wpeak) was higher than the power output reached at exhaustion during IE (P < 0.05). After 10 and 60 s recovery in normoxia, Wpeak was reduced by 38 ± 9 and 22 ± 10% without occlusion, and 61 ± 8 and 47 ± 10% with occlusion (P < 0.05). Following 10 s occlusion, Wpeak was 20% higher in hypoxia than normoxia (P < 0.05), despite similar muscle lactate accumulation ([La]) and phosphocreatine and ATP reduction. Sprint performance and anaerobic ATP resynthesis were greater after 60 s compared with 10 s occlusions, despite the higher [La] and [H+] after 60 s compared with 10 s occlusion recovery (P < 0.05). The mean rate of ATP turnover during the 60 s occlusion was 0.180 ± 0.133 mmol (kg wet wt)-1 s-1, i.e. equivalent to 32% of leg peak O2 uptake (the energy expended by the ion pumps). A greater degree of recovery is achieved, however, without occlusion. In conclusion, during incremental exercise task failure is not due to metabolite accumulation or lack of energy resources. Anaerobic metabolism, despite the accumulation of lactate and H+, facilitates early recovery even in anoxia. This points to central mechanisms as the principal determinants of task failure both in normoxia and hypoxia, with lower peripheral contribution in hypoxia. |
URI: | http://hdl.handle.net/10553/44473 | ISSN: | 0022-3751 | DOI: | 10.1113/JP270487 | Fuente: | Journal of Physiology [ISSN 0022-3751], v. 593 (20), 4631-4648 |
Colección: | Artículos |
Citas SCOPUSTM
84
actualizado el 24-nov-2024
Citas de WEB OF SCIENCETM
Citations
82
actualizado el 24-nov-2024
Visitas
86
actualizado el 14-oct-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.