Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44473
Campo DC Valoridioma
dc.contributor.authorMorales Álamo, Daviden_US
dc.contributor.authorLosa Reyna, Joséen_US
dc.contributor.authorTorres-Peralta, Rafaelen_US
dc.contributor.authorMartin-Rincon, Marcosen_US
dc.contributor.authorPérez Valera, Marioen_US
dc.contributor.authorCurtelin, Daviden_US
dc.contributor.authorPonce-González, Jesús Gustavoen_US
dc.contributor.authorSantana Rodríguez, Alfredoen_US
dc.contributor.authorCalbet, Jose A. L.en_US
dc.contributor.otherCurtelin, David-
dc.contributor.otherMorales-Alamo, David-
dc.contributor.otherCalbet, Jose A-
dc.contributor.otherPonce Gonzalez, Jesus Gustavo-
dc.contributor.otherSanchez de Torres-Peralta, Rafael-
dc.contributor.otherMartin-Rincon, Marcos-
dc.contributor.otherPerez Valera, Mario-
dc.date.accessioned2018-11-21T23:21:38Z-
dc.date.available2018-11-21T23:21:38Z-
dc.date.issued2015en_US
dc.identifier.issn0022-3751en_US
dc.identifier.urihttp://hdl.handle.net/10553/44473-
dc.description.abstractTo determine the mechanisms causing task failure during incremental exercise to exhaustion (IE), sprint performance (10 s all‐out isokinetic) and muscle metabolites were measured before (control) and immediately after IE in normoxia (PIO2: 143 mmHg) and hypoxia (PIO2: 73 mmHg) in 22 men (22 ± 3 years). After IE, subjects recovered for either 10 or 60 s, with open circulation or bilateral leg occlusion (300 mmHg) in random order. This was followed by a 10 s sprint with open circulation. Post‐IE peak power output (W peak) was higher than the power output reached at exhaustion during IE (P < 0.05). After 10 and 60 s recovery in normoxia, W peak was reduced by 38 ± 9 and 22 ± 10% without occlusion, and 61 ± 8 and 47 ± 10% with occlusion (P < 0.05). Following 10 s occlusion, W peak was 20% higher in hypoxia than normoxia (P < 0.05), despite similar muscle lactate accumulation ([La]) and phosphocreatine and ATP reduction. Sprint performance and anaerobic ATP resynthesis were greater after 60 s compared with 10 s occlusions, despite the higher [La] and [H+] after 60 s compared with 10 s occlusion recovery (P < 0.05). The mean rate of ATP turnover during the 60 s occlusion was 0.180 ± 0.133 mmol (kg wet wt)−1 s−1, i.e. equivalent to 32% of leg peak O2 uptake (the energy expended by the ion pumps). A greater degree of recovery is achieved, however, without occlusion. In conclusion, during incremental exercise task failure is not due to metabolite accumulation or lack of energy resources. Anaerobic metabolism, despite the accumulation of lactate and H+, facilitates early recovery even in anoxia. This points to central mechanisms as the principal determinants of task failure both in normoxia and hypoxia, with lower peripheral contribution in hypoxia.en_US
dc.description.abstractAt the end of an incremental exercise to exhaustion a large functional reserve remains in the muscles to generate power, even at levels far above the power output at which task failure occurs, regardless of the inspiratory O2 pressure during the incremental exercise. Exhaustion (task failure) is not due to lactate accumulation and the associated muscle acidification; neither the aerobic energy pathways nor the glycolysis are blocked at exhaustion. Muscle lactate accumulation may actually facilitate early recovery after exhaustive exercise even under ischaemic conditions. Although the maximal rate of ATP provision is markedly reduced at task failure, the resynthesis capacity remaining exceeds the rate of ATP consumption, indicating that task failure during an incremental exercise to exhaustion depends more on central than peripheral mechanisms. To determine the mechanisms causing task failure during incremental exercise to exhaustion (IE), sprint performance (10 s all-out isokinetic) and muscle metabolites were measured before (control) and immediately after IE in normoxia (PIO2: 143 mmHg) and hypoxia (PIO2: 73 mmHg) in 22 men (22 ± 3 years). After IE, subjects recovered for either 10 or 60 s, with open circulation or bilateral leg occlusion (300 mmHg) in random order. This was followed by a 10 s sprint with open circulation. Post-IE peak power output (Wpeak) was higher than the power output reached at exhaustion during IE (P < 0.05). After 10 and 60 s recovery in normoxia, Wpeak was reduced by 38 ± 9 and 22 ± 10% without occlusion, and 61 ± 8 and 47 ± 10% with occlusion (P < 0.05). Following 10 s occlusion, Wpeak was 20% higher in hypoxia than normoxia (P < 0.05), despite similar muscle lactate accumulation ([La]) and phosphocreatine and ATP reduction. Sprint performance and anaerobic ATP resynthesis were greater after 60 s compared with 10 s occlusions, despite the higher [La] and [H+] after 60 s compared with 10 s occlusion recovery (P < 0.05). The mean rate of ATP turnover during the 60 s occlusion was 0.180 ± 0.133 mmol (kg wet wt)-1 s-1, i.e. equivalent to 32% of leg peak O2 uptake (the energy expended by the ion pumps). A greater degree of recovery is achieved, however, without occlusion. In conclusion, during incremental exercise task failure is not due to metabolite accumulation or lack of energy resources. Anaerobic metabolism, despite the accumulation of lactate and H+, facilitates early recovery even in anoxia. This points to central mechanisms as the principal determinants of task failure both in normoxia and hypoxia, with lower peripheral contribution in hypoxia.en_US
dc.languageengen_US
dc.relation.ispartofJournal of Physiologyen_US
dc.sourceJournal of Physiology [ISSN 0022-3751], v. 593 (20), 4631-4648en_US
dc.subject241106 Fisiología del ejercicioen_US
dc.subject.otherHuman Skeletal-Muscle-
dc.subject.otherSevere Acute-Hypoxia-
dc.subject.otherAnaerobic Energy-Release-
dc.subject.otherSprint Exercise-
dc.subject.otherMaximal Exercise-
dc.subject.otherPower Output-
dc.subject.otherLactic-Acid-
dc.subject.otherGlycogen-Phosphorylase-
dc.subject.otherIntermittent Exercise-
dc.subject.otherCellular Mechanisms-
dc.titleWhat limits performance during whole-body incremental exercise to exhaustion in humans?en_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1113/JP270487en_US
dc.identifier.pmid593-
dc.identifier.scopus84944276184-
dc.identifier.isi000363090600013-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dcterms.isPartOfJournal Of Physiology-London-
dcterms.sourceJournal Of Physiology-London[ISSN 0022-3751],v. 593 (20), p. 4631-4648-
dc.contributor.authorscopusid35148038500-
dc.contributor.authorscopusid56297981500-
dc.contributor.authorscopusid56431163500-
dc.contributor.authorscopusid56841673800-
dc.contributor.authorscopusid56841662900-
dc.contributor.authorscopusid56607231500-
dc.contributor.authorscopusid25628359100-
dc.contributor.authorscopusid55617275900-
dc.contributor.authorscopusid7004323423-
dc.description.lastpage4648en_US
dc.identifier.issue20-
dc.description.firstpage4631en_US
dc.relation.volume593en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.contributor.daisngid1232764-
dc.contributor.daisngid4486976-
dc.contributor.daisngid3746436-
dc.contributor.daisngid4392482-
dc.contributor.daisngid3057600-
dc.contributor.daisngid7261294-
dc.contributor.daisngid7404383-
dc.contributor.daisngid7526316-
dc.contributor.daisngid1264657-
dc.contributor.daisngid1230811-
dc.contributor.daisngid31470516-
dc.contributor.daisngid90295-
dc.identifier.investigatorRIDI-4316-2016-
dc.identifier.investigatorRIDD-2683-2009-
dc.identifier.investigatorRIDH-6693-2015-
dc.identifier.investigatorRIDH-9500-2015-
dc.identifier.investigatorRIDH-8647-2016-
dc.identifier.investigatorRIDI-6495-2015-
dc.identifier.investigatorRIDNo ID-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Morales-Alamo, D-
dc.contributor.wosstandardWOS:Losa-Reyna, J-
dc.contributor.wosstandardWOS:Torres-Peralta, R-
dc.contributor.wosstandardWOS:Martin-Rincon, M-
dc.contributor.wosstandardWOS:Perez-Valera, M-
dc.contributor.wosstandardWOS:Curtelin, D-
dc.contributor.wosstandardWOS:Ponce-Gonzalez, JG-
dc.contributor.wosstandardWOS:Santana, A-
dc.contributor.wosstandardWOS:Calbet, JAL-
dc.date.coverdateOctubre 2015en_US
dc.identifier.ulpgces
dc.description.sjr2,679
dc.description.jcr4,731
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IUIBS: Rendimiento humano, ejercicio físico y salud-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Educación Física-
crisitem.author.deptGIR IUIBS: Rendimiento humano, ejercicio físico y salud-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptGIR IUIBS: Rendimiento humano, ejercicio físico y salud-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Educación Física-
crisitem.author.deptGIR IUIBS: Rendimiento humano, ejercicio físico y salud-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptGIR IUIBS: Rendimiento humano, ejercicio físico y salud-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Clínicas-
crisitem.author.deptGIR IUIBS: Rendimiento humano, ejercicio físico y salud-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Educación Física-
crisitem.author.orcid0000-0001-8463-397X-
crisitem.author.orcid0000-0002-0848-4260-
crisitem.author.orcid0000-0002-3685-2331-
crisitem.author.orcid0000-0002-8332-729X-
crisitem.author.orcid000-0002-1075-9948-
crisitem.author.orcid0000-0002-9215-6234-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameMorales Álamo, David-
crisitem.author.fullNameLosa Reyna,Jose-
crisitem.author.fullNameSanchez De Torres Peralta,Rafael-
crisitem.author.fullNameMartín Rincón, Marcos-
crisitem.author.fullNamePerez Valera,Mario-
crisitem.author.fullNamePonce González,Jesús Gustavo-
crisitem.author.fullNameSantana Rodríguez, Alfredo-
crisitem.author.fullNameLópez Calbet, José Antonio-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

78
actualizado el 21-abr-2024

Citas de WEB OF SCIENCETM
Citations

73
actualizado el 25-feb-2024

Visitas

86
actualizado el 14-oct-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.