Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/44425
Title: Cross-talk among epidermal growth factor, Ap<inf>5</inf>A, and nucleotide receptors causing enhanced ATP Ca<sup>2+</sup>signaling involves extracellular kinase activation in cerebellar astrocytes
Authors: Delicado, Esmerilda G.
Jimȩnez, Ana I.
Carrasquero, Luz María G.
Castro López-Tarruella, Enrique 
Miras-Portugal, Ma Teresa
UNESCO Clasification: 32 Ciencias médicas
Keywords: Calcium
Dinucleotides
ERK activation
Glia
Growth factors, et al
Issue Date: 2005
Publisher: 0360-4012
Journal: Journal of Neuroscience Research 
Abstract: In previous papers, we reported that ATP calcium responses in cerebellar astrocytes were strongly potentiated by preincubation with nanomolar concentrations of the diadenosine pentaphosphate Ap5A. However, the intracellular signaling pathway mediating this effect was not defined. We also showed that stimulation of astrocytes with the dinucleotide led to the activation of extracellular regulated kinases (ERKs). Here, we examined whether ERKs are involved in the potentiating mechanism and intracellular mechanism leading to their activation. Epidermal growth factor (EGF) exactly reproduced the potentiation displayed by the dinucleotide. Moreover, the potentiation of ATP responses by Ap5A and EGF was completely abolished by the MAP kinase (MEK) inhibitor U‐0126, indicating that ERK activation is a required step for the potentiation event. Our data also indicated that ERK activation and the potentiation of ATP calcium responses were sensitive to the src‐like kinase inhibitor herbimycin A, p21ras farnesyltransferase inhibitor peptide, and some PKC inhibitors. Taken together, our findings reveal that Ap5A triggers the potentiation of ATP calcium responses through an intracellular mechanism that is insensitive to pertussis toxin and that this potentiation requires src protein‐mediated ERK activation and the participation of an atypical protein kinase C isoform activated downstream from ERK.
URI: http://hdl.handle.net/10553/44425
ISSN: 0360-4012
DOI: 10.1002/jnr.20609
Source: Journal of Neuroscience Research [ISSN 0360-4012], v. 81, p. 789-796
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

11
checked on Jan 5, 2025

WEB OF SCIENCETM
Citations

11
checked on Jan 5, 2025

Page view(s)

42
checked on Sep 17, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.