Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44322
Título: | Multi-objective genetic algorithms applied to low power pressure microsensor design | Autores/as: | Monzón-Verona, José Miguel Garcia-Alonso Montoya, Santiago Sosa, Javier Montiel-Nelson, Juan A. |
Clasificación UNESCO: | 3306 Ingeniería y tecnología eléctricas | Palabras clave: | Genetic algorithm Optimization Low power optimization Microsensor Multi-objective, et al. |
Fecha de publicación: | 2013 | Editor/a: | 0264-4401 | Publicación seriada: | Engineering Computations | Resumen: | Purpose – The purpose of this paper is to explain in detail the optimization of the sensitivity versus the power consumption of a pressure microsensor using multi-objective genetic algorithms. Design/methodology/approach – The tradeoff between sensitivity and power consumption is analyzed and the Pareto frontier is identified by using NSGA-II, AMGA-II and ɛ-MOEA methods. Findings – Comparison results demonstrate that NSGA-II provides optimal solutions over the entire design space for spread metric analysis, and AMGA-II is better for convergence metric analysis. Originality/value – This paper provides a new multiobjective optimization tool for the designers of low power pressure microsensors. | URI: | http://hdl.handle.net/10553/44322 | ISSN: | 0264-4401 | DOI: | 10.1108/EC-03-2012-0072 | Fuente: | Engineering Computations (Swansea, Wales)[ISSN 0264-4401],v. 30 (17099245), p. 1128-1146 |
Colección: | Artículos |
Citas SCOPUSTM
2
actualizado el 22-dic-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 22-dic-2024
Visitas
74
actualizado el 09-mar-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.