Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44309
Campo DC Valoridioma
dc.contributor.authorMazorra Aguiar, L.en_US
dc.contributor.authorPereira, B.en_US
dc.contributor.authorDavid, M.en_US
dc.contributor.authorDíaz, F.en_US
dc.contributor.authorLauret, P.en_US
dc.contributor.otherMAZORRA AGUIAR, LUIS-
dc.contributor.otherDiaz, Felipe-
dc.date.accessioned2018-11-21T21:55:07Z-
dc.date.available2018-11-21T21:55:07Z-
dc.date.issued2015en_US
dc.identifier.issn0038-092Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/44309-
dc.description.abstractSolar forecasting has become an important issue for power systems planning and operating, especially in islands grids. Power generation and grid utilities need day ahead, intra-day and intra-hour Global Horizontal solar Irradiance (GHI) forecasts for operations. In this paper, we focus on intra-day solar forecasting with forecast horizons ranging from 1 h to 6 h ahead. An Artificial Neural Networks (ANN) model is proposed to forecast GHI using ground measurement data and satellite data (from Helioclim-3) as inputs. In order to compare the forecasting results obtained by the proposed ANN model, we also include in this work a simple naïve model, based on the persistence of the clear sky index (smart persistence model), as well as another reference model, the climatological mean model. The models were trained and tested for two ground measurements stations in Gran Canaria Island, Pozo (south) and Las Palmas (in the north). Firstly, ANN was trained and tested only with past ground measurement irradiance and compared by means of relative metrics with naïve models. While this first step led to better performances, forecasting skills were improved by including exogenous inputs to the model by using GHI satellite data from surrounding area.en_US
dc.languageengen_US
dc.publisher0038-092X-
dc.relation.ispartofSolar Energyen_US
dc.sourceSolar Energy[ISSN 0038-092X],v. 122, p. 1309-1324en_US
dc.subject3308 Ingeniería y tecnología del medio ambienteen_US
dc.subject.otherSolar forecastingen_US
dc.subject.otherSatellite imagesen_US
dc.subject.otherArtificial Neural Networksen_US
dc.subject.otherSpatio-temporal analysisen_US
dc.titleUse of satellite data to improve solar radiation forecasting with Bayesian Artificial Neural Networksen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.solener.2015.10.041
dc.identifier.scopus84947778908-
dc.identifier.isi000367107500115-
dcterms.isPartOfSolar Energy-
dcterms.sourceSolar Energy[ISSN 0038-092X],v. 122, p. 1309-1324-
dc.contributor.authorscopusid56971482900-
dc.contributor.authorscopusid56970705800-
dc.contributor.authorscopusid35486904800-
dc.contributor.authorscopusid26429057600-
dc.contributor.authorscopusid7004327525-
dc.description.lastpage1324-
dc.description.firstpage1309-
dc.relation.volume122-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000367107500115-
dc.contributor.daisngid3785154-
dc.contributor.daisngid6874850-
dc.contributor.daisngid30889953
dc.contributor.daisngid1403275-
dc.contributor.daisngid3919769-
dc.contributor.daisngid1136985-
dc.identifier.investigatorRIDK-4255-2017-
dc.identifier.investigatorRIDL-1074-2014-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Aguiar, LM
dc.contributor.wosstandardWOS:Pereira, B
dc.contributor.wosstandardWOS:David, M
dc.contributor.wosstandardWOS:Diaz, F
dc.contributor.wosstandardWOS:Lauret, P
dc.date.coverdateDiciembre 2015
dc.identifier.ulpgces
dc.description.sjr1,974
dc.description.jcr3,685
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Eléctrica-
crisitem.author.orcid0000-0002-9746-7461-
crisitem.author.orcid0000-0001-7874-6636-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMazorra Aguiar, Luis-
crisitem.author.fullNameDíaz Reyes, Felipe-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

97
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

88
actualizado el 17-nov-2024

Visitas

63
actualizado el 02-sep-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.