Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44299
Título: Stochastic vs deterministic traffic simulator. Comparative study for its use within a traffic light cycles optimization architecture
Autores/as: Medina, Javier Sánchez 
Moreno, Manuel Galán
Royo, Enrique Rubio 
Clasificación UNESCO: 120304 Inteligencia artificial
120326 Simulación
332702 Análisis del trafico
Palabras clave: Model
Fecha de publicación: 2005
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 1st International Work-Conference on the Interplay Between Natural and Artificial Computation 
Resumen: Last year we presented at the CEC2004 conference a novel architecture for traffic light cycles optimization. The heart of this architecture is a Traffic Simulator used as the evaluation tool (fitness function) within the Genetic Algorithm. Initially we allowed the simulator to have a random behavior. Although the results from this sort of simulation were consistent, it was necessary to run a huge amount of simulations before we could get a significant value for the fitness of each individual of the population. So we assumed some simplifications to be able to use a deterministic simulator instead of the stochastic one. In this paper we will confirm that it was the right decision; we will show that there is a strong linear correlation between the results of both simulators. Hence we show that the fitness ranking obtained by the deterministic simulator is as good as the obtained with the stochastic one.
URI: http://hdl.handle.net/10553/44299
ISBN: 978-3-540-26319-7
ISSN: 0302-9743
DOI: 10.1007/11499305_64
Fuente: Mira J., Álvarez J.R. (eds) Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. IWINAC 2005. Lecture Notes in Computer Science, vol 3562. Springer, Berlin, Heidelberg
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.