Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44291
Título: Traffic signal optimization in la Almozara District in Saragossa under congestion conditions, using genetic algorithms, traffic microsimulation, and cluster computing
Autores/as: Sánchez-Medina, Javier J. 
Galán-Moreno, Manuel J.
Rubio-Royo, Enrique
Clasificación UNESCO: 120304 Inteligencia artificial
332703 Sistemas de transito urbano
Palabras clave: Cellular automata Intellig(CA)
Genetic algorithms (GAs)
Intelligent transportation systems
Microsimulation
Traffic congestion, et al.
Fecha de publicación: 2010
Publicación seriada: IEEE Transactions on Intelligent Transportation Systems 
Resumen: Urban traffic congestion is a pandemic illness affecting many cities around the world. We have developed and tested a new model for traffic signal optimization based on the combination of three key techniques: 1) genetic algorithms (GAs) for the optimization task; 2) cellular-automata-based microsimulators for evaluating every possible solution for traffic-light programming times; and 3) a Beowulf Cluster, which is a multiple- instructionmultiple-data (MIMD) multicomputer of excellent price/performance ratio. This paper presents the results of applying this architecture to a large-scale real-world test case in a congestion situation, using four different variables as fitness function of the GA. We have simulated a set of congested scenarios for La Almozara in Saragossa, Spain. Our results in this extreme case are encouraging: As we increase the incoming volume of vehicles entering the traffic networkfrom 36 up to 3600 vehicles per hourwe get better performance from our architecture. Finally, we present new research directions in this area.
URI: http://hdl.handle.net/10553/44291
ISSN: 1524-9050
DOI: 10.1109/TITS.2009.2034383
Fuente: IEEE Transactions on Intelligent Transportation Systems[ISSN 1524-9050],v. 11, (5308324), p. 132-141
Colección:Artículos
Vista completa

Citas SCOPUSTM   

134
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

103
actualizado el 15-dic-2024

Visitas

62
actualizado el 26-feb-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.