Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44067
Título: Fingers shape biometric identification using Point Distribution Models
Autores/as: Ferrer, M. A. 
Morales, A.
Alonso, J. B. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: biometrics (access control) , eigenvalues and eigenfunctions , fingerprint identification , least squares approximations , shape recognition , support vector machines
Fecha de publicación: 2010
Editor/a: 0013-5194
Publicación seriada: Electronics letters 
Resumen: A hand profile characterisation approach for biometric identification with contactless hand image acquisition is evaluated. The approach models the shapes of fingers with Point Distribution Models (PDMs), which consist of a mean shape and a number of eigenvectors which describe the main modes of variation of the shape class. The weighted PDM eigenvectors that capture the variation between the input finger shapes and the averaged finger shapes are used as feature vectors. Classification is performed using a least squares support vector machine. Experiments using multiple hand databases demonstrated the advantage of using finger PDMs.
URI: http://hdl.handle.net/10553/44067
ISSN: 0013-5194
DOI: 10.1049/el.2010.2086
Fuente: Electronics Letters[ISSN 0013-5194],v. 46, p. 495-497
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.