Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44066
Título: Reducing features from pejibaye palm DNA marker for an efficient classification
Autores/as: Travieso, Carlos M. 
Alonso, Jesús B. 
Ferrer, Miguel A. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Feature reduction Discriminative Common Vector , Independent Component Analysis , Principal Component Analysis , supervised classification , DNA markers
Fecha de publicación: 2010
Editor/a: 0302-9743
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: International Conference on Nonlinear Speech Processing (NOLISP 2009) 
International Conference on Nonlinear Speech Processing, NOLISP 2009 
Resumen: This present work presents different feature reduction methods, applied to Deoxyribonucleic Acid (DNA) marker, and in order to identify a success of 100% based on Discriminate Common Vectors (DCV), Principal Component Analysis (PCA), and Independent Component Analysis (ICA) using as classifiers Support Vector Machines (SVM) and Artificial Neural Networks. In particular, the biochemical parameterization has 89 Random Amplified polymorphic DNA (RADPS) markers of Pejibaye palm landraces, and it has been reduced from 89 to a 3 characteristics, for the best method using ICA. The interest of this application is due to feature reduction and therefore, the reduction of computational load time versus the use of all features. This method allows having a faster supervised classification system for the process of the plant certification with origin denomination. Therefore, this system can be transferred to voice applications in order to reduce load time, keeping or improving the success rates.
URI: http://hdl.handle.net/10553/44066
ISBN: 978-3-642-11508-0
364211508X
ISSN: 0302-9743
DOI: 10.1007/978-3-642-11509-7_20
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 5933 LNAI, p. 152-162
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.