Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44045
Título: Combining different off-line handwritten character recognizers
Autores/as: Travieso, Carlos M. 
Alonso, Jesús B. 
Ferrer, Miguel A. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Training , Handwriting recognition , Character recognition , Feature extraction , Support vector machines , Databases , Off-line handwritten recognition , Decision Fusion , OCR , Pattern Recognition
Fecha de publicación: 2011
Publicación seriada: INES 2011 - 15th International Conference on Intelligent Engineering Systems, Proceedings
Conferencia: 15th International Conference on Intelligent Engineering Systems, INES 2011 
Resumen: This present work presents a recognizer based on the combination of three Support Vector Machine (SVM) classifiers whose inputs have different parameters from characters. The three approaches of feature extraction for handwritten off-line digits, capital letters and lower case letters, have been chosen for improving the combination using database NIST-SD19. We have applied pre-processing in order to achieve greater inter-class discrimination and similarity. These three feature extractions are based on Kirsch masks with and without slant correction and Fourier elliptic descriptors.
URI: http://hdl.handle.net/10553/44045
ISBN: 9781424489565
DOI: 10.1109/INES.2011.5954765
Fuente: INES 2011 - 15th International Conference on Intelligent Engineering Systems, Proceedings (5954765), p. 315-318
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

3
actualizado el 17-nov-2024

Visitas

105
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.