Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44045
Título: | Combining different off-line handwritten character recognizers | Autores/as: | Travieso, Carlos M. Alonso, Jesús B. Ferrer, Miguel A. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Training , Handwriting recognition , Character recognition , Feature extraction , Support vector machines , Databases , Off-line handwritten recognition , Decision Fusion , OCR , Pattern Recognition | Fecha de publicación: | 2011 | Publicación seriada: | INES 2011 - 15th International Conference on Intelligent Engineering Systems, Proceedings | Conferencia: | 15th International Conference on Intelligent Engineering Systems, INES 2011 | Resumen: | This present work presents a recognizer based on the combination of three Support Vector Machine (SVM) classifiers whose inputs have different parameters from characters. The three approaches of feature extraction for handwritten off-line digits, capital letters and lower case letters, have been chosen for improving the combination using database NIST-SD19. We have applied pre-processing in order to achieve greater inter-class discrimination and similarity. These three feature extractions are based on Kirsch masks with and without slant correction and Fourier elliptic descriptors. | URI: | http://hdl.handle.net/10553/44045 | ISBN: | 9781424489565 | DOI: | 10.1109/INES.2011.5954765 | Fuente: | INES 2011 - 15th International Conference on Intelligent Engineering Systems, Proceedings (5954765), p. 315-318 |
Colección: | Actas de congresos |
Citas SCOPUSTM
3
actualizado el 17-nov-2024
Visitas
105
actualizado el 27-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.