Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44044
Título: Pollen classification based on contour features
Autores/as: Travieso, Carlos M. 
Briceño, Juan C.
Ticay-Rivas, Jaime R.
Alonso, Jesús B. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Hidden Markov models , Support vector machines , Kernel , Shape , Databases , Equations , Mathematical model , Pollen grains , pollen classification , HMM , SVM
Fecha de publicación: 2011
Publicación seriada: INES 2011 - 15th International Conference on Intelligent Engineering Systems, Proceedings
Conferencia: 15th International Conference on Intelligent Engineering Systems, INES 2011 
Resumen: Conserving earth's biodiversity for future generations is a fundamental global task, where automated recognition of pollen species by means of computer vision represents a highly prioritized issue. This work focuses on analysis and classification stages. The morphological details of the contour are proposed as pollen grains discriminative features. The approach has been developed as a robust pollen identification based on an HMM kernel. A Vector Support Machine was used as classifier. The principal contribution in this work, in terms of the use of the HMM is the gradient optimisation problem implementation in the SVM. 47 tropical honey plant species have been classified achieving a mean of 93.8% ± 1.43 of success.
URI: http://hdl.handle.net/10553/44044
ISBN: 9781424489565
DOI: 10.1109/INES.2011.5954712
Fuente: INES 2011 - 15th International Conference on Intelligent Engineering Systems, Proceedings (5954712), p. 17-21
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

28
actualizado el 01-dic-2024

Visitas

71
actualizado el 20-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.