Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44041
Título: | Apnea detection based on hidden Markov model kernel | Autores/as: | Travieso, Carlos M. Alonso, Jesús B. Ticay-Rivas, Jaime R. Del Pozo-Baños, Marcos |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Apnea Detection, Hidden Markov Model, Kernel Building, Pattern Recognition, Non-linear Processing | Fecha de publicación: | 2011 | Editor/a: | 0302-9743 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 5th International Conference on Nonlinear Speech Processing (NOLISP 2011) 5th International Conference on Nonlinear Speech Processing, NOLISP 2011 |
Resumen: | This work presents a new system to diagnose the syndrome of obstructive sleep apnea (OSA) that includes a specific block for the removal of Electrocardiogram (ECG) artifacts and the R wave detection. The system is modeled by ECG cepstral coefficients. The final decision is done with two different approaches. The first one is based on Hidden Markov Model (HMM), as classifier. On the other hand, another classification system is based on Support Vector Machines, being the parameterization based on the transformation of HMM by a kernel. Our results reached up to 98.67%. | URI: | http://hdl.handle.net/10553/44041 | ISBN: | 9783642250194 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-642-25020-0_10 | Fuente: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 7015 LNAI, p. 71-79 |
Colección: | Actas de congresos |
Citas SCOPUSTM
1
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 25-feb-2024
Visitas
65
actualizado el 03-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.