Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44034
Título: Fault diagnosis using audio and vibration signals in a circulating pump
Autores/as: Henríquez, P. 
Alonso Hernández, Jesús Bernardino 
Ferrer Ballester, Miguel Ángel 
Travieso González, Carlos Manuel 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Transform
Fecha de publicación: 2012
Editor/a: 1742-6588
Publicación seriada: Journal of Physics: Conference Series 
Conferencia: 25th International Congress on Condition Monitoring and Diagnostic Engineering (COMADEM) 
25th International Congress on Condition Monitoring and Diagnostic Engineering, COMADEM 2012 
Resumen: This paper presents the use of audio and vibration signals in fault diagnosis of a circulating pump. The novelty of this paper is the use of audio signals acquired by microphones. The objective of this paper is to determine if audio signals are capable to distinguish between normal and different abnormal conditions in a circulating pump. In order to compare results, vibration signals are also acquired and analysed. Wavelet package is used to obtain the energies in different frequency bands from the audio and vibration signals. Neural networks are used to evaluate the discrimination ability of the extracted features between normal and fault conditions. The results show that information from sound signals can distinguish between normal and different faulty conditions with a success rate of 83.33%, 98% and 91.33% for each microphone respectively. These success rates are similar and even higher that those obtained from accelerometers (68%, 90.67% and 71.33% for each accelerometer respectively). Success rates also show that the position of microphones and accelerometers affects on the final results.
URI: http://hdl.handle.net/10553/44034
ISSN: 1742-6588
DOI: 10.1088/1742-6596/364/1/012135
Fuente: Journal of Physics: Conference Series[ISSN 1742-6588],v. 364 (012135)
Colección:Actas de congresos
miniatura
Adobe PDF (1,17 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.