Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/44023
DC FieldValueLanguage
dc.contributor.authorLopez-De-Ipina, K.
dc.contributor.authorAlonso, J. B.
dc.contributor.authorSolé-Casals, J.
dc.contributor.authorBarroso, N.
dc.contributor.authorFaundez, M.
dc.contributor.authorEcay, M.
dc.contributor.authorTravieso, C.
dc.contributor.authorEzeiza, A.
dc.contributor.authorEstanga, A.
dc.date.accessioned2018-11-21T19:38:43Z-
dc.date.available2018-11-21T19:38:43Z-
dc.date.issued2012
dc.identifier.isbn9789898565334
dc.identifier.urihttp://hdl.handle.net/10553/44023-
dc.description.abstractAlzheimer's disease (AD) is the most prevalent form of progressive degenerative dementia and it has a high socio-economic impact in Western countries, therefore is one of the most active research areas today. Its diagnosis is sometimes made by excluding other dementias, and definitive confirmation must be done trough a post-mortem study of the brain tissue of the patient. The purpose of this paper is to contribute to im-provement of early diagnosis of AD and its degree of severity, from an automatic analysis performed by non-invasive intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET), that have the great advantage of being non invasive, low cost and without any side effects.
dc.relation.ispartofIJCCI 2012 - Proceedings of the 4th International Joint Conference on Computational Intelligence
dc.sourceIJCCI 2012 - Proceedings of the 4th International Joint Conference on Computational Intelligence, p. 698-705
dc.titleAlzheimer disease diagnosis based on automatic spontaneous speech analysis
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.relation.conference4th International Joint Conference on Computational Intelligence, IJCCI 2012
dc.identifier.scopus84886924936
dc.contributor.authorscopusid56263484400
dc.contributor.authorscopusid24774957200
dc.contributor.authorscopusid14018739300
dc.contributor.authorscopusid23392059500
dc.contributor.authorscopusid6701452104
dc.contributor.authorscopusid36978594100
dc.contributor.authorscopusid55520375900
dc.contributor.authorscopusid6602376272
dc.contributor.authorscopusid14022747600
dc.contributor.authorscopusid35199573400
dc.description.lastpage705
dc.description.firstpage698
dc.type2Actas de congresoses
dc.date.coverdateDiciembre 2012
dc.identifier.conferenceidevents121488
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.event.eventsstartdate05-10-2012-
crisitem.event.eventsenddate07-10-2012-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 17, 2024

Page view(s)

39
checked on Feb 3, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.