Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44022
Título: Temperature prediction based on different meteorological series
Autores/as: Vásquez, José L.
Travieso, Carlos M. 
Travieso, Carlos M. 
Alonso, Jesús B. 
Briceno, Juan C.
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Artificial neural networks , Temperature measurement , Time series analysis , Predictive models , Temperature distribution , Solar radiation , Rain , Temperature prediction , meteorological serie , neural networks
Fecha de publicación: 2012
Publicación seriada: Proceedings - 2012 3rd Global Congress on Intelligent Systems, GCIS 2012
Conferencia: 2012 3rd Global Congress on Intelligent Systems, GCIS 2012 
Resumen: In this work, a temperature predictor has been designed and implemented based on different series of meteorological data. The prediction is built by an artificial neural network multilayer perceptron, using 5 samples as window size of meteorological data. Besides, the floating point algorithm was evaluated, reaching a mean square error of 0.35, meaning a variation of 0.28 Celsius degrees versus the real temperature. Different approaches will be applied in order to show our best proposal.
URI: http://hdl.handle.net/10553/44022
ISBN: 9780769548609
ISSN: 2155-6083
DOI: 10.1109/GCIS.2012.103
Fuente: Proceedings - 2012 3rd Global Congress on Intelligent Systems, GCIS 2012 (6449495), p. 104-107
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

2
actualizado el 17-nov-2024

Visitas

46
actualizado el 03-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.